
IKE 

Institut für Kernenergetik 
und Energiesysteme 

 

 Universität Stuttgart 

Juni 2010 IKE 6 - 206  

 

 
 
 
 
 
 
 
On the Influence of the Reso-
nance Scattering Treatment in 
Monte Carlo Codes on High 
Temperature Reactor Charac-
teristics 
  
 
 
 
 
 
 
 
 
 
Björn Becker 

 





IKE 

Institut für Kernenergetik 
und Energiesysteme 

 

 Universität Stuttgart 

Juni 2010 IKE 6 - 206  

 

 
 
 
On the Influence of the Reso-
nance Scattering Treatment in 
Monte Carlo Codes on High 
Temperature Reactor Charac-
teristics 
 
 
 
von der Fakultät Energie-, Verfahrens-  
und Biotechnik der Universität Stuttgart  
zur Erlangung der Würde eines  
Doktor-Ingenieurs (Dr.-Ing.)  
genehmigte Abhandlung 
 
 
vorgelegt von 
 
Ingénieur Diplômé, M. Eng.  

Björn Becker 
geboren in Marburg. 
 
 
 
Hauptberichter: 
Prof. G. Lohnert, Ph.D. 

Mitberichter: 
Prof. Dr. V. Heinzel 
 
Tag der Einreichung: 09.12.2009 
 
Tag der mündlichen Prüfung: 04.03.2010 
 
 
ISSN – 0173 – 6892 



Acknowledgments

I would like to express my gratitude to my advisor Dr. habil. Ron Dagan. The prepara-
tion of this work would not have been possible without his support and patience. I am
deeply indebted to Prof. Lohnert for his constant support and essential questions. I am
furthermore thankful for the assistance and encouragement of Prof. Heinzel.
This work was performed at the Institute for Neutron Physics and Reactor Technology

of the Karlsruhe Institute of Technology. I want to express my gratitude to all my
colleagues, notably to Dr. Broeders and Mr. M. Becker.
I want to thank Prof. Danon form RPI for explaining his experimental method to

validate the resonance dependent scattering kernel.
Financial support for this work was given by the EnBW Kernkaft GmbH. In particular

I want to thank Dr. Herrling, Dr. Vogel, Mrs. Schölch and Mrs. Lübben.



Contents

Content 5

List of Figures 7

List of Tables 9

Abstract 11

Introduction 13

1 Neutron Cross Section Theory 15
1.1 Cross Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.1.1 General Description of Resonances . . . . . . . . . . . . . . . . . 15
1.1.2 Resonance Models . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.2 Scattering Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.2.1 Angular Expansion of the Scattering Kernel . . . . . . . . . . . . 21
1.2.2 Energy Moments of the Scattering Kernel . . . . . . . . . . . . . 22
1.2.3 Asymptotic Scattering Kernel . . . . . . . . . . . . . . . . . . . . 22

1.3 Doppler Broadening Theory . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.3.1 Temperature Dependent Cross Sections . . . . . . . . . . . . . . . 26
1.3.2 Temperature Dependent Scattering Kernel . . . . . . . . . . . . . 28

1.4 The Scattering Kernel in the Transport Equation . . . . . . . . . . . . . 31

2 A New Developed Stochastic Doppler Broadening Method 33
2.1 The Code DOPPLER-MC . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2 Comparison of the Analytic and Stochastic Doppler Broadening Methods 34

3 The DBRC Method for the Resonance Dependent Scattering Kernel in MC
Codes 41
3.1 The Sampling of the Velocity of the Target Nucleus Method . . . . . . . 41
3.2 The new DBRC Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3 Comparison of the new DBRC and the Standard MCNP Scattering Model 44

3.3.1 Energy Transfer Kernel . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3.2 Up- and Down-Scattering Probabilities . . . . . . . . . . . . . . . 46
3.3.3 Energy Moments of the Scattering Kernel . . . . . . . . . . . . . 47
3.3.4 Angular Moments of the Scattering Kernel . . . . . . . . . . . . . 47

3.4 The S(α, β) Probability Table Method . . . . . . . . . . . . . . . . . . . 48
3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4 Validation of the DBRC Model 51
4.1 RPI 238U and 232Th Scattering Experiment . . . . . . . . . . . . . . . . . 51

5



4.2 nTOF 232Th Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3 Comparison of DBRC and S(α, β) Based MCNP Calculations . . . . . . 55
4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5 Impact of the Resonant Dependent Scattering Kernel on HTR 57
5.1 High Temperature Reactors . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.1.1 HTR Design Characteristics . . . . . . . . . . . . . . . . . . . . . 58
5.1.2 Current HTR Designs . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2 HTR Unit Cell Calculations . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.2.1 TRISO Matrix Unit Cell Study . . . . . . . . . . . . . . . . . . . 64
5.2.2 HTR Fuel Pebbles . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.2.3 HTR Fuel Compacts . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.3 HTR-PM Core Calculations . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.3.1 Impact of the DBRC Kernel on the HTR-PM Criticality . . . . . 82
5.3.2 Impact of the DBRC Kernel on the HTR-PM Doppler Reactivity

Coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.3.3 Estimation of the Criticality Shift due to Higher 239Pu Content . 85

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Conclusion and Outlook 89

Bibliography 91

Nomenclature 97

6



List of Figures

1.1 Total, elastic and radiative capture cross section of 238U at 300 K . . . . 16
1.2 Total resonance cross section of 238U at 6.67 eV at 300 K . . . . . . . . . 17
1.3 Schematic of entrance and exit channels as used in scattering theory . . . 19
1.4 Trajectories of a neutron and a target nucleus before and after a scattering

event in the laboratory reference frame (a,b) and in the center of mass
reference frame (c,d), zero Kelvin approximation . . . . . . . . . . . . . . 23

1.5 Asympthotic scattering kernel of 238U at 6.67 eV . . . . . . . . . . . . . . 24
1.6 Doppler effect widening of the 6.67 eV resonance scattering cross section

of 238U . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.7 Wigner-Wilkins scattering kernel of 238U at 6.67 eV and 1200 K . . . . . 30
1.8 Resonance dependent scattering kernel of 238U at 6.67 eV and 1200 K . . 31

2.1 Scheme of the DOPPLER-MC program . . . . . . . . . . . . . . . . . . . 35
2.2 Convergence of the stochastic Doppler broadening algorithm for the scat-

tering and total cross section of 238U at 1200 K and 36.67 eV . . . . . . . 36
2.3 Stochastic and analytic Doppler broadening of scattering and total cross

section of 238U at 1200 K and 600 K . . . . . . . . . . . . . . . . . . . . . 37
2.4 Stochastic and analytic Doppler broadening of the scattering cross section

of 232Th in the energy region from 0.0001 eV to 0.01 eV at 300 K and 3000 K 38
2.5 Stochastic Doppler broadening of the (n,α) cross section of 10B at different

temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.6 Stochastic and analytic resonance dependent scattering kernel of 238U at

6.53 eV and 1200 K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.7 Stochastic and analytic resonance dependent scattering kernel of 232Th at

23.2 eV and 1200 K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1 Stochastic resonance dependent kernel (DBRC) and constant cross section
kernel (std. MCNP) of 238U at 6.67 eV and for various temperatures . . . 45

3.2 Stochastic resonance dependent kernel (DBRC) and constant cross section
kernel (std. MCNP) of 238U at 6.53 eV and for various temperatures . . . 46

3.3 Up- and down-scattering probabilities (std. MCNP and DBRC) and scat-
tering cross section of 238U at 1200 K . . . . . . . . . . . . . . . . . . . . 47

3.4 Energy moments and mean energy change of 238U scattering kernel at 1000
K (std. MCNP and DBRC) . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.5 First angular moment of the 238U scattering kernel at 6.5 eV and 1000 K
(std. MCNP and DBRC ) . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.6 Second angular moment of the 238U scattering kernel at 6.5 eV and 1000
K (std. MCNP and DBRC) . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1 RPI scattering experiment for 238U . . . . . . . . . . . . . . . . . . . . . 52

7



4.2 Comparison of the simulated and experimental 232Th resonance scattering-
counts for thin 232Th sample . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3 Comparison of the simulated and experimental 232Th resonance scattering-
counts for thick 232Th sample . . . . . . . . . . . . . . . . . . . . . . . . 53

4.4 nTOF 232Th capture yield experiment . . . . . . . . . . . . . . . . . . . . 54

5.1 TRISO coated particle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.2 The Chinese HTR-10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.3 The Japanese HTTR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.4 The HTTR fuel compact, rod and assembly . . . . . . . . . . . . . . . . 61
5.5 The HTR-MODUL reactor . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.6 Difference of criticality between DBRC and std. MCNP based calculations

for different TRISO matrix packing fractions and temperatures . . . . . . 66
5.7 Neutron spectrum for different TPF at Tf=1200 K . . . . . . . . . . . . 67
5.8 Relative difference of the (n,γ) reaction rate of 238U of DBRC and std.

MCNP based calculations for different packing fractions . . . . . . . . . . 68
5.9 Comparison of neutron flux in the vicinity of four 238U resonances for

DBRC and std. MCNP based calculations (TPF=35 % and Tf=1200 K) 68
5.10 Difference in criticality between DBRC and std. MCNP based calculations

for different HM contents and fuel temperatures . . . . . . . . . . . . . . 71
5.11 Pebble unit cell reactivity calculated with DBRC and std. MCNP for

different HM contents per pebble and fuel temperatures . . . . . . . . . . 72
5.12 Pebble unit cell Doppler reactivity coefficient calculated with DBRC and

std. MCNP for different HM contents and fuel temperatures . . . . . . . 73
5.13 239Pu inventory per pebble during burn up and difference depending on

scattering model (5 g HM per pebble case) . . . . . . . . . . . . . . . . . 74
5.14 239Pu inventory per pebble during burn up and difference depending on

scattering model (10 g HM per pebble case) . . . . . . . . . . . . . . . . 74
5.15 Neutron flux in the vicinity of the 69 eV 232Th resonance . . . . . . . . . 76
5.16 HTTR pin cell model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.17 HTTR block model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.18 Spectral zones of HTR-PM in ZIRKUS . . . . . . . . . . . . . . . . . . . 81
5.19 Reactivity of the HTR-PM equilibrium core at different fuel temperatures

calculated with DBRC and std. MCNP . . . . . . . . . . . . . . . . . . . 84
5.20 Doppler reactivity coefficient of the HTR-PM equilibrium core at different

fuel temperatures calculated with DBRC and std. MCNP . . . . . . . . . 84
5.21 239Pu concentration during burn up of HTR-PM unit cell for different fuel

temperatures calculated with the DBRC and with the standard. MCNP
versions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.22 Increase of the 239Pu concentration calculated with DBRC relative to stan-
dard MCNP calculation for an HTR-PM unit cell and different fuel tem-
peratures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

8



List of Tables

4.1 Criticality k∞ of a LWR pin cell at TF=1200 K applying different scatter-
ing models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2 Capture reaction rate of a LWR pin cell at TF=1200 K applying different
scattering models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.1 HTR operating in the past . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.2 HTR-10 like TRISO particle design . . . . . . . . . . . . . . . . . . . . . 60
5.3 Criticality of the TRISO matrix in dependence of TRISO packing fraction

(TPF)and fuel temperature . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.4 Resonance parameter of 238U s-wave resonances between 0 and 210 eV . . 69
5.5 Influence of the 238U resonance dependent scattering kernel of specific en-

ergy intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.6 Criticality of a pebble unit cell for different HM contents and fuel temper-

atures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.7 Fuel group cross section of HTTR pin cell models for std. MCNP and

DBRC based calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.8 Criticality of a hexagonal block unit cells for different fuel temperatures . 80
5.9 Criticality of the HTR-PM reactor with different scattering models . . . 82
5.10 Criticality of the HTR-PM core with additional 239Pu . . . . . . . . . . . 86

9



10



Abstract
The different interactions of neutrons in a nuclear reactor like absorption, production
or scattering are generally introduced by solving the well known Boltzmann transport
equation. Its solution scheme is based on the balance between losses and gain of neutrons.
It turns out that all commonly practical ways to solve this basic equation exhibit an
intrinsic inconsistency. The neutron scattering loss term includes explicitly the impact
of the temperature and cross section shape on the interaction probability, namely the
Doppler broadening of the integral scattering cross section. However, the calculations
of the neutron gain based on the above mentioned scattering event assumes zero Kelvin
temperature and ignores the shape of the cross section. For heavy nuclei with pronounced
resonances like 238U this inconsistency leads to noticeable errors in the evaluation of core
parameters as was shown by Ouisloumen and Sanchez [1], and Rothenstein and Dagan [2]

who developed the correct resonance dependent scattering kernel.
In this work, a new approach, namely a stochastic method is presented for the calcu-

lation of the Doppler broadened integral cross sections as well as for the new developed
resonance dependent scattering kernel. A stochastic methodology, based on an idea of
Rothenstein [3], named as the “Doppler Broadening Rejection Correction” (DBRC) is im-
plemented as a solver for the above mentioned missing resonance dependent kernel in
the scattering treatment of Monte Carlo (MC) codes. The flexibility of using the unique
form of a rejection method is confirmed, for the first time, by comparing it to the ana-
lytic S(α, β) scattering tables approach [4]. However, the DBRC scheme allows for a much
wider and practical use of the improved scattering kernel theory. In addition, the DBRC
method is validated by several experiments in particular by a dedicated 232Th scattering
experiment done at the Gaerttner Institute of the Rensselaer Polytechnic Institute (RPI)
in the USA.
The influence of this new, stochastic resonance dependent scattering kernel on core pa-

rameters is extensively investigated for High Temperature Reactors (HTR). Both, pebble
bed and block type HTR designs are considered. A significant impact is found in unit
cell calculations as far as criticality, reaction rates and Doppler reactivity coefficients are
concerned. The criticality decreases up to 1.20 % (depending on temperature and on
the HTR design). The Doppler coefficient is found to be more negative by up to 10 %.
In addition, the neutron flux shape in the vicinity of resonances and the fuel inventory
during burn up change noticeably when the new resonance model is applied.
Further on, for industrial relevant purposes, it is shown that for a full scale model of

the Chinese HTR-PM reactor, the DBRC kernel leads to a reactivity decrease of about
0.20 % and renders the Doppler reactivity coefficient being more negative by about 6 %
to 8 %.

Zusammenfassung
Die verschiedenen Wechselwirkungen von Neutronen in einem Kernreaktor wie zum Bei-
spiel Absorption, Produktion und Streuung werden im Allgemeinen durch die Lösung der
Boltzmanntransportgleichung beschrieben. Vereinfacht ausgedrückt bilanziert diese den
Verlust gegen den Gewinn von Neutronen. Dabei weisen die üblichen Lösungsmethoden
insofern eine Inkonsistenz auf, als sie im Neutronenverlustterm den Einfluss von Tem-
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peratur und Wirkungsquerschnittsform auf die Streuwahrscheinlichkeit von Neutronen,
die so genannte Dopplerverbreiterung des integralen Streuwirkungsquerschnitts, explizit
berücksichtigt. Für den Neutronengewinnterm hingegen werden diese Effekte unter der
Annahme der Neutronenstreuung an ruhenden Kernen (“Null-Grad-Kelvin-Näherung”)
vernachlässigt. Für schwere Nuklide mit einer stark ausgebildeten Resonanzstruktur, wie
zum Beispiel 238U, führt diese Inkonsistenz zu deutlichen Fehlern bei der Berechnung von
Kernparametern. Dies wurde von Ouisloumen und Sanchez [1] und von Rothenstein und
Dagan [2], die den exakten, resonanzabhängigen Streukern entwickelt haben, gezeigt.
In dieser Arbeit wird eine neue, stochastische Methode für die Berechnung von Doppler

verbreiterten, integralen Wirkungsquerschnitten wie auch des resonanzabhängigen Streu-
kerns vorgestellt. Des Weiteren wird basierend auf einer Idee von Rothenstein [3] mit Hilfe
einer stochastischen Methode, der so genannten “Doppler Broadening Rejection Correcti-
on” (DBRC), der resonanzabhängige Streukern in die Streubehandlung von Monte Carlo
(MC) Codes eingefügt. Erstmalig wird diese “Rejection” Methode durch einen Vergleich
mit analytischen S(α, β) Tabellen [4] bestätigt. Das DBRC Schema ermöglicht hierbei ei-
ne allgemeinere und praktischere Verwendung der erweiterten Resonanzstreutheorie. Die
DBRC Methode wurde darüber hinaus durch zahlreiche Experimente validiert. Insbe-
sondere wird ein 232Th Streuexperiment, welches am Gaerttner Institut des Rensselaer
Polytechnic Institute (RPI) in den USA durchgeführt wurde, zur Validierung herangezo-
gen.
Der Einfluss des neuen, stochastischen und resonanzabhängigen Streukerns auf die neu-

tronenphysikalischen Eigenschaften von Hochtemperaturreaktoren (HTR) wird in dieser
Arbeit detailliert untersucht. Sowohl für Kugel- als auch Blockdesigns konnten in Ein-
heitszellrechnungen im Vergleich zu üblichen Verfahren deutliche Unterschiede bezüglich
der Kritikalität, Reaktionsraten und Dopplerreaktivitätskoeffizienten nachgewiesen wer-
den. Die Kritikalität sinkt, abhängig von der Temperatur und des HTR Designs, um bis
zu 1.2 % ab. Der Dopplerreaktivitätskoeffizient wird um bis zu 10 % negativer. Zusätzlich
ändern sich der Neutronenflussverlauf in der Nähe von Resonanzen und das Brennstoffin-
ventar während des Abbrandes merklich, wenn das neue Streumodell angewendet wird.
Zuletzt wurde ein vollständiges Modell des chinesischen HTR-PM Reaktors untersucht.

Das DBRC Streumodell führt zu einer Reduktion der errechneten Kritikalität um 0.2 %.
Der Dopplerreaktivitätskoeffizient wird um ca. 6 % bis 8 % negativer.



Introduction
The early developments of nuclear reactor engineering in the middle of the last century
allowed for the construction of the first critical reactor, Chicago Pile-1, of the Manhattan
project and the first electricity producing reactor the Obninsk Nuclear Power Plant. Since
then the endeavor in mathematical and numerical methods concerning nuclear reactor
theory has been growing steadily. Major efforts have been directed toward improving
the approximation techniques used to solve the basic neutron transport (Boltzmann)
equation, which govern the description of neutrons reactions within a nuclear reactor. The
development of new fast computers increased the capability of more accurate numerical
deterministic codes to solve the Boltzmann equation employing fine geometry meshes
with a large number of neutron energy groups allowing for enhanced accuracy. Moreover,
the use of stochastic codes with very detailed geometry and continuous energy description
of the neutron was significantly increased. These codes are also known as Monte Carlo
(MC) codes.
Even though significant progress has been made for analytic (deterministic) and MC

techniques, several physical phenomena have not been solved completely. One of the
approximations concerns the prediction of the neutrons energy and flight direction after
a scattering interaction with a nucleus. The general description of the secondary energy
and angular distribution of neutrons is referred to as the so-called scattering kernel which
is the double differential part of the scattering cross section. Commonly, the assumption
was made that the impact of the cross section (resonance) shape and of the temperature
on the scattering kernel is negligible. Thereafter, the asymptotic (0 K) scattering kernel
was used. This assumption is incorrect for heavy nuclei such as 238U with pronounced
resonance structures [1,2]. In addition, it causes an inconsistency in the very basic solution
of the Boltzmann equation. The integral cross section explicitly includes the temperature
and resonance shape effects (the well known Doppler broadening definition) whereas its
differential part which also appears within the transport equation ignores these effects.
Furthermore the effect of the correct scattering kernel on light water reactors was shown
to be significant [5,4].

In this work, the resonances scattering kernel theory is extended and further devel-
oped. In particular, the use of stochastic methods is specifically explored. Alternative
stochastic Doppler broadening methods are introduced for the calculation of the integral
as well as the differential part of the scattering cross section. Consequently, the need for
correcting the inconsistency within the Boltzmann equation is highlighted. By applying
a stochastic formalism for the resonance dependent scattering kernel in MC codes as pro-
posed by Rothenstein [3], it becomes possible, for the first time, to confirm the analytical
solution for the secondary energy distribution of Rothenstein [5] and Dagan [4]. This new
implemented scheme allows for a much wider and practical use of the improved scattering
kernel theory. In this work, the new introduced, stochastic method is validated by ded-
icated scattering experiments performed at the Rensselaer Polytechnic Institute (RPI).
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Furthermore, the possibility of calculating innovative core concepts more accurately is
improved in comparison to the S(α, β) approach for resonant materials as suggested by
Dagan [4].
In this study, the influence of this new, stochastic resonance dependent scattering

kernel is extensively investigated for high temperature reactors (HTR). HTRs are part
of the future generation of nuclear reactors, namely the Generation IV type reactors [6].
In general, the Generation IV reactor types are believed to have highly improved nuclear
safety, improved proliferation resistance and minimized waste production, and being at
the same time highly economical. Most of these designs are not expected to be available
for commercial construction before 2030 with exception of the Chinese HTR-PM-500
which is already in the construction phase. The modular HTR design is currently the most
advanced HTR concept which is based on inherent safety and economic competitiveness.
In this work, representative unit cell calculations are analyzed for various HTR de-

signs and the impact of the new scattering kernel on safety relevant core parameters is
deducted. Special emphasis is placed on the resonance scattering kernel of 238U. A de-
tailed model of the Chinese HTR-PM reactor is used to investigate the influence of the
resonance dependent scattering kernel and also on its equilibrium core parameters.

Based on the above introduction, the work is organized in the following manner:

1. In the first chapter the relevant theory of neutron cross section and, in particular
the cross section resonances are introduced. The effect of temperature, i.e. Doppler
broadening, on cross sections and notably on the scattering kernel is introduced.
The analytic Doppler broadening models are discussed with emphasis on the broad-
ening of the scattering kernel in the vicinity of resonances.

2. In the second chapter, a new stochastic methodology for Doppler broadening of
cross sections and of the scattering kernel is introduced and compared to analytic
methods.

3. In the third chapter, the implementation of the resonance dependent scattering
kernel into MC codes is presented by exemplary use of MCNP. The use of analytic
scattering tables is identified. A new developed, stochastic method, the so called
Doppler Broadening Rejection Correction (DBRC) is highlighted. The deviations
from the default MCNP scattering kernel are pointed out and analyzed.

4. The fourth chapter gives a validation of the DBRC scattering model by the use
of two different dedicated scattering experiments using 238U and 232Th targets. A
comparison between the new DBRC and the analytic models is made for a simple
unit cell.

5. The fifth chapter discusses the influence of the resonance dependent scattering
kernel on High Temperature Reactors. The analyzed models include very basic
unit cell calculations of fuel particles in a graphite matrix, unit cell calculations of
spherical and cylindrical fuel elements, and finally reach a full core model of the
HTR-PM reactor. Aspects like criticality, Doppler reactivity coefficient and fuel
inventory during the fuel cycle are discussed.

The work is completed by a conclusion and an outlook.



1 Neutron Cross Section Theory
In this chapter, the relevant theory of neutron cross section is presented. A special
emphasis is made on the resonance cross section and the scattering kernel since the
combination of those form the essence of this work. The dependence of the cross sections
on temperature, namely the Doppler broadening, is discussed.
For a detailed study of neutron resonance cross sections one should address to standard

nuclear engineering books (e.g. Bell and Glasstone [7], Stacey [8]) in addition to more
specific publications (e.g. Fröhner [9], Lynn [10], Bethe [11], Vogt [12]).

1.1 Cross Sections
The interaction probability of neutrons with matter in space is based on the concept of
neutron cross sections. It is represented by a cross sectional area of a nucleus which is the
probability for an interaction with the oncoming neutron and is expressed in area units
called barns (1 b = 10−24 cm2). Several reaction processes are possible when a nucleus,
e.g. 238U, is bombarded by a neutron whereas each reaction type x (also called reaction
channel) is represented by its own specific cross section σx.
In nuclear reactors one distinguishes between two interactions. The first one is a direct

interaction of the neutron with the target nucleus in a one-step process e.g. potential
scattering σp. The cross section of this hard sphere scattering is about the size of the
geometrical cross section of the nucleus (several barns).
The second process is a two-step interaction. The neutron and the target form a

so-called compound nucleus (CN). This nucleus exists for a certain time and decays
subsequently by various possible decay channels: e.g. elastic scattering (σs), inelastic
scattering (σs′), radiative capture (σγ), fission (σf ) or other reactions involving different
secondary particles like protons (σ(n,p)) or alpha particles (σ(n,α)).
All specific cross sections sum up to the total interaction probability namely the total

cross section σt.
σt = σγ + σf + σs + σ(n,α) + ... (1.1)

1.1.1 General Description of Resonances
Neutron cross sections depend on the energy of the neutron. The scattering cross section
of 238U for example may rise by several magnitudes at specific energies (see figure 1.1).
This behavior is called a resonance of the cross section. Similar behavior as the scattering
cross section shows the capture cross section at the very same energies. The space
between the distinct resonances decreases with increasing energy. Figure 1.1 shows that
the scattering cross sections exhibits a dip on the lower energy side of the resonance.
This dip is due to the interference range of the potential and resonance scattering. The
capture resonance on the other hand is fully symmetric.
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Figure 1.1: Total, elastic and radiative capture cross section of 238Uat 300 K [13,14]

Figure 1.2 shows the total cross sections in the vicinity of the first 238U resonance at
6.67 eV. A cross section resonance is characterized by the resonance energy E0, the peak
cross section σmax as well as by the resonance widths Γ at half maximum 1

2σmax. Each
reaction x has its very own width Γx. The ratio of the reaction width to the width of
the total cross section Γ denotes the relative reaction probability. The ratio Γn/Γ gives
for example the relative probability of resonance scattering, where Γn is the scattering
width.
The distinct resonance structure of the neutron cross section of most heavy nuclei and

of some light nuclei arises from the formation of the compound nucleus of the neutron and
the target based on Bohrs compound nucleus theory [15]. The neutron enters the target
nucleus X of mass number A and a compound nucleus Y of mass A+ 1 is formed. This
nucleus is unstable due to its high excitation energy state (indicated by an asterisk in
formula 1.2). Therefore, after its formation the compound nucleus decays by expulsion
of one or several particles (n, α, p, γ) or by breaking in a fission process. A radiative
capture process for example can be allegorized by:

XA + n1 → [Y A+1]∗ → Y A+1 + Eγ (1.2)

The excitation energy E∗ is the sum of the kinetic energy E of the incident neutron and
of the binding energy EB of the absorbed neutron in the compound system:

E∗ = EB + E (1.3)
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Figure 1.2: Total resonance cross section of 238U at 6.67 eV at 300 K

The compound-nucleus formation favors specific neutron energies to obtain a definite
quantum state of the formed nucleus. The excitation energy E∗ matches in this case
a specific energy level and the interaction probability, i.e. the cross section, increases
sharply.
In the following, several decay channels of the compound nucleus, i.e. reaction types,

are discussed.

Radiative Capture

In a radiative capture reaction (n, γ) one or more gamma-ray photons are emitted from
the compound nucleus. The nucleus attains eventually its ground-state. In that case,
the emitted gamma-ray energy is the sum of the neutron kinetic energy and the binding
energy of the neutron in the compound nucleus.
In general the radiative capture process is the dominating neutron absorption process

for slow neutrons besides fission. Emission of charged particles (e.g. α, p) is quite rare
at this energy. Due to the positive charge, the particles have to overcome the Coulomb
electrostatic potential which means that an additional energy is needed to detach the
particle from the nucleus; this happens only for a small number of low mass elements.

Fission

In a fission process (n, f) the compound nucleus breaks up into two parts of medium
weighted nucleus - the fission products. Instantaneous gamma rays and usually two
or three neutrons are emitted. The fission products decay subsequently and beta and
gamma particles are emitted over a period of time. The easiest model to understand the
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fission process is the liquid-drop model [16]. The critical energy for fission depends on the
charge and mass of the target nucleus [17]. If the binding energy of a neutron is higher
than the critical energy, the compound nucleus is likely to fission at any neutron energy.
For 235U about 200 MeV of energy is released per fission. Over 80 % of this energy is
kinetic energy of the fission products, while the rest is distributed as kinetic energy of the
neutrons, instantaneaous gamma ray emisison and beta particle, neutrino and gamma
ray emission from fission products.

Elastic and Inelastic Scattering

Contrary to the hard sphere scattering, in elastic scattering (n, n) via a compound nucleus
formation the nucleus decays immediately by emitting a neutron. The target nucleus
attains its initial ground state.
The inelastic scattering process is a combination of a scattering process and an (n, γ)

process which is likely to happen at fast neutron energies. The compound nucleus decays
by emitting a neutron of lower energy than the captured, incident neutron. The target
nucleus is left in an excited stage. Inelastic scattering is not important in the energy
range, which is of interest in this work.

1.1.2 Resonance Models
In this section, the basis principle of the commonly used resonance models is briefly
discussed. These models describe the shape of the resonance cross sections which is an
essential element in this work.
The incident neutron as well as the incident target nucleus and both emerging reac-

tion products may be described quantum mechanically by ingoing and outgoing wave
functions. The incident and emerging particles are denoted as the incident channels (c)
and the exit channels (c′), respectively. The target is characterized by its spin quantum
number I which can be zero or a multiple of 1/2. The neutron spin on the other hand
is always 1/2. These two spins combine to the so-called channel spin s = I + 1/2. It
is convenient to represent the relative motion of the neutron in angular moments of the
ingoing wave with the momentum l which is zero or a positive integer. Resonances are
classified according to the contributing partial wave. s-, p-, d-, f-resonances corresponds
to moments of 0, 1, 2, 3, respectively.
Due to the short ranged nuclear forces the interaction configuration can be separated

into an external region and an internal region (see figure 1.3). It is assumed that the
nuclear forces in the external region are negligible. The wave functions of the free particles
can therefore be derived analytically. The compound nucleus on the other hand is formed
inside the internal region. Here the wave functions are unknown due to the complexity
of the compound nucleus. However, it is possible to match the ingoing wave function of
neutron and nucleus (incident channel) and the internal wave function of the compound
nucleus at the boundary of the nuclear forces. For each ingoing wave one finds the
transition probability to different outgoing waves (outgoing channel) and thus the partial
cross section.
It is assumed that the transition time from external to internal region (≈ 10−20 s)

is significantly shorter than the lifetime of the compound nucleus (≈ 10−14 s [18]). Due
to this relative long lifetime, the disintegration of the compound nucleus is essentially
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Figure 1.3: Schematic of entrance and exit channels as used in scattering theory [20]

independent of the original mode of formation which means that the incident and out-
going channels are decoupled. Therefore secondary particles, e.g. scattered neutrons,
are essentially emitted isotropically in the center of mass reference frame. For detailed
information see Fröhner [9] and Lane and Thomas [19].
The transition probability from a specific incident channel (c) to an exit channel (c′),

namely the partial cross section, can be written most generally by the R-matrix ex-
pression [19] (equation 1.4) where the specific channels are characterized by the above
mentioned quantum numbers. This formalism can be applied to various incident parti-
cles. However, in this work only incident neutrons interacting with a target nucleus are
considered as incident channel. The partial cross section from incident channel c to exit
channel c′ is defined as [8]:

σcc′ = πλ2
cgc |δcc′ − Ucc′ | (1.4)

where λ is the reduced de Broglie wavelength of the neutron. g is the so called statistical
spin factor defined by g = (2J+1)/2(2I+1) which describes the probability that a neutron
with angular moment l and the target spin add to the total spin quantum number J .
δcc′ is the Kronecker delta which is 1 for c = c′ and otherwise 0. Ucc′ is the so-called
collision matrix or S matrix which is basically a probability matrix between the incident
channels and the outgoing channels. This collision matrix can then be described by the
well-known resonance descriptions [8,21,9]:

• Single-Level Breit-Wigner (SLBW): The SLBW approximation is limited to
the case of well separated resonances with no resonance-resonance interference.
Furthermore, this approximation can produce nonphysically negative scattering
cross sections in some cases.

• Multi-Level Breit-Wigner (MLBW): The MLBW approximation includes resonance-
resonance interference effects in the elastic scattering and total cross sections. In
contrast to the SLBW, cross sections are guaranteed to be positive. For light and
medium-mass nuclei and for fissile actinides the MLBW approximation is often
inadequate [9].

• Adler-Adler (AA): The AA approximation is usually restricted to the s-wave
resonances of the fissionable nuclei in the low energy region. Level-level and channel-
channel interference effects are included in all cross sections via "effective" resonance
parameters.

• Reich-Moore: The Reich-Moore formalism has become the dominant choice for
resonance cross section representation. This formalism describes in detail nearly all
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resonances in the peak, the interference dips and the multilevel interference region.
Light, medium and heavy nuclei both fissile and non fissile can be equally well
described.

The simplest model to describe the resonance shape is given by the SLBW formalism
which is shortly presented in the following:

It is possible to reduce the general equation 1.4 to simple expressions for the capture,
fission and scattering cross section by using a specific SLBW collision matrix [9]. By
introducing the maximum resonance cross section σ0 at energy E0, one obtains the well
known Breit-Wigner single-level formula. The neutron capture and fission resonance cross
section can then be written as [8]:

σγ,f = σ0
Γγ,f
Γ

(
E0

E

)1/2 1
1 + y2 (1.5)

with:
y = 2

Γ (E − E0) (1.6)

Γγ and Γf are the partial width of the resonance of the radiative capture and the fission
reaction. The Γγ

Γ and Γf
Γ fractions denote the probability that the compound nucleus

decays via the γ or the fission channel, respectively. The maximum resonance cross
section σ0 is defined as:

σ0 = 4πλ2 Γn
Γ g = 2.608 106 (A+ 1)2

A2E

Γn
Γ g (1.7)

where the neutron energy E is given in eV.

The Breit-Wigner single-level formula for elastic scattering is composed of three terms:
the resonance scattering, the interference scattering and the potential scattering. The
interference of resonance and potential scattering causes a cross section dip on the lower
energy side of the resonance. The SLBW scattering cross section can be written as:

σs = σ0
Γγ,f
Γ

(
E0

E

)1/2 1
1 + y2︸ ︷︷ ︸

resonance scattering

+ σ02R
λ

y

1 + y2︸ ︷︷ ︸
interference scattering

+ 4πR2︸ ︷︷ ︸
potential scattering

(1.8)

where Γn
Γ is the probability of the elastic scattering channel. R is the radius of the tar-

get nucleus which is approximately R ≈ 1.25 10−13A1/3 cm. λ is the wavelength of the
neutron.

A precise representation of the resonance cross section is crucial for reactor calculations
and in particular for determining the neutron balance. In the slowing down process,
neutrons are particularly absorbed by the resonances of the main fuel constituents, e.g
238U.
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1.2 Scattering Kernel

The Scattering Kernel σs
(
E → E ′, ~Ω→ ~Ω′

)
is the derivative of the the scattering cross

section σs(E) with respect to energy and angular direction of scattered neutrons. It
denotes the probability that a neutron with energy E, traveling in direction Ω is scattered
to energy E ′ and in direction Ω′. The scattering kernel can be rewritten as:

σs
(
E → E ′, ~Ω→ ~Ω′

)
= σs(E)P

(
E → E ′, ~Ω→ ~Ω′

)
(1.9)

where P represents the scattering probability. A commonly used simplification is to
assume that the scattering depends only on the angle between the initial and secondary
unit vectors Ω and Ω′: Ω · Ω′ = µ0 = cosϑ. This approximation holds in general for non
crystalline structures. It follows:

σs
(
E → E ′, ~Ω→ ~Ω′

)
= σs (E → E ′, µ0) (1.10)

The integration over the secondary energy and angular distribution of the scattering
kernel leads evidently to the scattering cross section:

2π
∫ ∞

0
dE ′

∫ 1

−1
dµ0σs (E → E ′, µ0) = σs(E) (1.11)

1.2.1 Angular Expansion of the Scattering Kernel

For most deterministic transport methods it is customary to expand the double differen-
tial scattering cross section into orthogonal Legendre polynomials [22]:

σs
(
E → E ′, ~Ω→ ~Ω′

)
=
∞∑
n=0

2n+ 1
4π σsn (E → E ′)Pn(µ0) (1.12)

where Pn(µ0) are the Legendre polynomials of the cosine of the scattering angle µ0 in the
laboratory reference frame. σsn (E → E ′) are the Legendre moments of the scattering
kernel which can be found by:

σsn (E → E ′) =
∫ −1

1
2πPn(µlab0 )σs

(
E → E ′, ~Ω→ ~Ω′

)
dµlab0 (1.13)

Using the zeroth order Legendre polynomials, P0(x) = 1, an integration over the scat-
tering angle, i.e. the isotropic scattering kernel is obtained, which describes solely the
energy transfer σs1 (E → E ′) = σs (E → E ′). Using the first order Legendre polynomial,
P1(x) = x, one obtains the first moment of the scattering kernel σs1 (E → E ′). This
moment is used to determine the mean cosine of the scattering angle:

µ̄lab0 (E) =
∫∞
0 σs1 (E → E ′) dE ′

σs(E) (1.14)

which is commonly used in deterministic codes.
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1.2.2 Energy Moments of the Scattering Kernel
In addition to the angular Legendre expansion, an expansion into energy moments Ak(E)
is of great help. Theses energy moments are then used as matrix elements of the scattering
operator in deterministic transport methods [23], which is obtained by multiplying the
energy transfer with the corresponding neutron energy loss and by integrating over the
secondary energy distribution:

Ak(E) =
∫ ∞

0
(E ′ − E)kσs0 (E → E ′) dE ′ (1.15)

Theses moments can be used to calculate the mean energy loss per collision at energy
E:

〈E − E ′〉av = −A1(E)
A0(E) (1.16)

1.2.3 Asymptotic Scattering Kernel
The elastic scattering process can be treated by laws of classic mechanics of two-body ki-
netics with energy and momentum conservation. In the following the so-called asymptotic
scattering kernel is derived which describes the secondary energy and angular distribution
of scattered neutrons at zero Kelvin. Three assumptions are made:

• Isotropic scattering: An important, commonly used assumption is made that the
neutron scattering is isotropic in the center of mass reference frame (COM) (see
1.1.2)

• Hard spheres: It is assumed that both, the neutron and the nucleus, behave like
perfect elastic hard spheres (two body kinetics). Resonance effects are neglected.

• Zero Kelvin temperature: It is considered that the target is at rest in the laboratory
reference frame (LAB) i.e. the target is at 0 K temperature. Consequently, the
target can not transfer kinetic energy to the neutron.

In the laboratory frame, a neutron with mass unity moves with speed v towards the
target with mass A (see Figure 1.4). In the COM frame the neutron moves with speed:

u = Av

A+ 1 (1.17)

and the nucleus with speed:
U = − v

A+ 1 (1.18)

The total momentum in the COM frame is zero:

Am U +m u = −Am
v

A+ 1 +m
Av

A+ 1 = 0 (1.19)

The conservation of momentum and kinetic energy gives a relation to the secondary
velocities of neutron u′ and of the target U ′ in the COM system:

u′ + AU ′ = 0 (1.20)
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Figure 1.4: Trajectories of a neutron and a target nucleus before and after a scattering event
in the laboratory reference frame (a,b) and in the center of mass reference frame
(c,d), zero Kelvin approximation

1
2 (u′)2 + 1

2A (U ′)2 = 1
2 (u)2 + 1

2A (U)2 = 1
2

(
Av

A+ 1

)2
+ 1

2A
(

v

A+ 1

)2
(1.21)

which gives for the secondary velocities:

u′ = Av

A+ 1 and U ′ = v

A+ 1 (1.22)

Consider µC and µ0 the cosines of the scattering angles in the COM and LAB frame,
respectively one has:

E ′

E
= 1 + 2AµC + A2

(1 + A)2 (1.23)

and
µ0 = 1 + AµC

(1 + 2AµC + A2)1/2 (1.24)

where E and E ′ are the neutron energy before and after the scattering process, respec-
tively. Both, the secondary energy E ′ and and the scattering angle in LAB frame µ0
depend on µc. Defining the ratio α = (A− 1)2 / (A+ 1)2 we obtain:

E ′

E
= 1

2 [(1 + α) + (1− α)µC ] (1.25)

The minimum energy transfer E ′min/E occurs if µC is unity. Then the neutron does not
lose energy. The maximum energy transfer E ′max/E is given for µC = −1. One obtains:

E ′min
E

= 1 and E ′max
E

= α (1.26)

The mean energy loss 〈E − E ′〉av is given by:

〈E − E ′〉av (E) = 1
2(1− α)E (1.27)

and the mean cosine of the scattering angle µ̄lab0 is given by:

µ̄lab0 = 2
3A (1.28)
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Figure 1.5: Asympthotic scattering kernel of 238U at 6.67 eV

The energy transfer kernel can be rewritten as:

σ(E → E ′) = σ(E)
(1− α)E (1.29)

which is only non-zero in the interval: E ≥ E ′ ≥ αE. The secondary neutrons are equally
distributed between the incident neutron energy E and αE. The energy transfer depends
strongly on the mass number of the collision partner of the neutron. For Hydrogen (A = 1
and α=0) the neutron may lose its entire energy in a single collision. For heavy nuclei,
the possible energy loss of a neutron in an elastic scattering is significantly smaller.

Figure 1.5 shows the asymptotic scattering kernel of 238U for an incident neutron
with energy 6.67 eV. The distribution of the scattering angel is illustrated by using angle
segments. Each segment corresponds to a range of scattering angles (e.g. red corresponds
to the range −0.75 < µ = cosϑ < −0.5 where ϑ is the scattering angle). In the case of
the asymptotic kernel of 238U at 6.67 eV, the minimum energy of a scattered neutron is
Emin = 6.67 eV ·

(
237
239

)2
= 6.558 eV while the mean energy loss is 〈E − E ′〉av=0.056 eV

and the mean cosine angle is µ̄lab0 =0.0028. The integral of the this scattering kernel is
normalized to the 0 K cross section at 6.67 eV energy.
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Figure 1.6: Doppler effect widening of the 6.67 eV resonance scattering cross section of 238U

1.3 Doppler Broadening Theory

The temperature of the target has a significant impact on the shape of the resonance. As
temperature increases, the width of the resonance tends to broaden while the peak cross
section decreases (see figure 1.6). This behavior is known as Doppler broadening. The
reason for this is that the target nuclei are thermally agitated at non-zero K temperature.
In order to take into account the movement of the targets, one has to distinguish

between the laboratory (LAB) reference frame and the target-at-rest (TR) frame. The
zero Kelvin cross section denotes only the interaction probability in the TR reference
frame of a specific nucleus. On the other hand, the temperature dependent cross section
of a bulk of thermally agitated nuclei in the LAB frame is calculated by averaging the
zero Kelvin cross section over the target velocity distribution. The well known Doppler
broadening equation is then given by:

σx (v, T ) = 1
v

∫
all V :vr>0

vrσx (vr, 0)MT (V )dV (1.30)

where σx (v, T ) is the Doppler broadened cross section of reaction x, σx (vr, 0) is the
zero-Kelvin cross section and vr is the relative speed of the neutron in the TR frame.
MT (V ) is the spectrum of the target velocities given by a velocity distribution p(V ).
Commonly it is assumed that the target nuclei behave like atoms of a free gas. Their
velocity distribution p(V ) for this free gas model (FGM) is then given by a Maxwell
Boltzmann distribution:
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MT (V ) = 4√
π
β3/2V 2e(−βV 2) (1.31)

with:
β = M

2kBT
(1.32)

and where V is the speed and M is the mass of target. kB is the Boltzmann constant.
In this section the analytic Doppler broadening methods are introduced for the cross

sections, as well as for the scattering kernel which is the differential part of the scattering
cross section.

1.3.1 Temperature Dependent Cross Sections
There are several methods used to Doppler broaden resonance cross sections in an ana-
lytic way. They can be divided into two different methodologies. One way of Doppler
broadening is to address directly to the complex resonance shape functions ψ + iχ used
for example in the Single-Level Breit-Wigner (SLBW) formalism. Using equation 1.5 and
1.30 the temperature dependent capture cross section becomes:

σγ (E, T ) = σ0Γγ
Γ

(
E0

E

)1/2
ψ (ξ, q) (1.33)

where E0 is the resonance energy. Γ and Γγ are the total and capture resonance widths.
The variables q and ξ are defined as:

q = 2
Γ (E − E0) and ξ = Γ

(4E0kBT/A)1/2 (1.34)

and the temperature dependent function ψ:

ψ (ξ, q) = ξ

2
√
π

∫ −∞
∞

e−(1/4)(q−p)2ξ2 dp

1 + p2 (1.35)

In the same way the temperature dependent scattering cross section can be obtained for
SLBW resonances:

σs (E, T ) = σ0Γn
Γ ψ (ξ, q) + σ0R

λ0
χ (ξ, q) + 4πR2 (1.36)

where Γn is the scattering resonance width. The additional temperature dependent func-
tion χ is defined as:

χ (ξ, q) = ξ√
π

∫ −∞
∞

pe−(1/4)(q−p)2ξ2 dp

1 + p2 (1.37)

This formalism has been extended by Fröhner [9] to treat also multilevel resonance for-
malism (see section 1.1.2) using the so called Turing’s Method.
However, a much more widely used method for Doppler broadening is based on tab-

ulated point data of the zero Kelvin cross section. The so called SIGMA1 method was
proposed by Cullen and Weisbin [24] and later integrated in the Doppler broadening mod-
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ule BROADR of the well known cross section processing code NJOY [25]. For this method
cross sections are stored on a specific energy grid such that it is possible to interpolate
linearly between the points:

σ(E) = E − Ek
Ek+1 − Ek

σk+1 + Ek+1 − E
Ek+1 − Ek

σk (Ek ≤ E ≤ Ek+1)

= Ak +BkE

(1.38)

with the interpolation constants Ak and Bk. σk is the cross section at energy Ek. Ak and
Bk are the interpolation constants. This interpolation with energy can be introduced in
terms of velocity:

σ(x) = ak + bkx
2 (1.39)

with the interpolation constants ak and bk.

Substituting y2 = βV 2 and x2 = βv2
r in equation 1.30 and 1.31 and replacing σ by

equation 1.39 leads to [24]:

σ (v, T ) = 1
y2

( 1
π

)1/2 ∫ ∞
0

x2σ (x)
[
e−(x−y)2 − e−(x+y)2]

dx

= 1
y2

( 1
π

)1/2∑
k

∫ xk+1

xk

x2
(
ak + bkx

2
) [
e−(x−y)2 − e−(x+y)2]

dx

= σ∗(y, T )− σ∗(−y, T )

(1.40)

By substituting Z = x−y and collection in terms of powers of Z one obtains for σ∗(y, T ):

σ∗ (y, T ) = 1
y2

( 1
π

)1/2∑
k

∫ xk+1

xk

[
bkZ

4 + 4bkyZ3 +
(
ak + 6bky2

)
Z2

+
(
2aky + 4bky3

)
Z +

(
aky

2 + bky
4
)]
e(−Z2)dZ

(1.41)

The integral can be solved using the relation:

2√
π

∫ xk+1

xk

Zne−Z
2
dZ = Fn(xk + 1)− Fn(xk) (1.42)

where n = 0, 1, 2, 3, 4 and where Fn is defined as:

F 0(x) = ERF (x)
F 1(x) = (1/π)1/2 +

(
1− e−x2)

F 2(x) = 1/2 ERF (x)− a/
√
π e−x

2

F 3(x) = (1/π)1/2
[
1− (1 + x2)e−x2]

F 4(x) = 3/4 ERF (x)− (1/π)1/2
(3x
π

+ x3
)
e−x

2

(1.43)

With the set of equations 1.40 to 1.43 a complete method is given to Doppler broaden
any energy dependent cross section .
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1.3.2 Temperature Dependent Scattering Kernel
Since the scattering kernel is the double differential part of the scattering cross section,
it evidently depends on temperature as well. As shown before, the asymptotic scattering
kernel neglects the velocity distribution of the targets and thus its temperature depen-
dence (see section 1.2.3). Consequently, any energy transfer from the target nucleus to
the scattered neutron is not possible. For low energies and resonant cross sections the
asymptotic kernel is evidently unjustified as was shown in the previous section. There-
fore, parallel to equation 1.30 the temperature dependent scattering kernel should be
derived by solving the following equation:

σTs
(
E → E ′, ~Ω→ ~Ω′

)
= 1
v

∫
all V :vr>0

vrσs (vr, 0)P (v, V → E ′, ~Ω′)MT (V )dV (1.44)

where σTs
(
E → E ′, ~Ω→ ~Ω′

)
is the scattering kernel from neutron energy E to E ′ and

from direction ~Ω to ~Ω′. v and vr denote the neutron speed in the laboratory and in the
target-at-rest reference frame, respectively. V is the target speed. MT is the spectrum
of V , namely the Maxwell Boltzmann distribution in case of a free gas model. P (v, V →
E ′, ~Ω′) is the probability density of v and V , which leads to the specific values of E ′ and
~Ω′ after scattering. σs (vr, 0) is the zero Kelvin scattering cross section.
In 1944, Wigner and Wilkins [26] developed the first temperature dependent scattering

kernel by solving equation 1.44 for moderator materials without internal structures, i.e.
without cross section resonances. Their isotropic kernel introduced the possibility of an
energy transfer from a target nucleus to a neutron. For constant cross section σs equation
1.44 becomes:

σTs
(
E → E ′, ~Ω→ ~Ω′

)
= σs

v

∫
all V :vr>0

vrP (v, V → E ′, ~Ω′)MT (V )dV (1.45)

This leads to the zeroth moment of the scattering kernel of the solution of Wigner and
Wilkins:

σTs0 (E → E ′) = σsA

8E e
−E
′−E

2kBT (G1 +G2)

G1 = e+ v2
max−v

2
min

2 [ERF (Θvmax − ζvmin)− ERF (Θvmax + ζvmin)]

G2 = e−
v2
max−v

2
min

2 [ERF (Θvmax − ζvmin) + ERF (Θvmax + ζvmin)]

(1.46)

with Θ = (A + 1)/(2
√
A) and ζ = (A − 1)/(2

√
A). vmax and vmin are the larger and

smaller value of the incident neutron speed v and secondary neutron speed v′.
In 1967 Blackshaw and Murray [27] introduced a new form of the scattering probability

function in the velocity space, i.e. the isotropic velocity scattering kernel for energy
dependent scattering cross sections as well as the angular moments of this kernel.
Ouisloumen and Sanchez [1] integrated in 1991 (and shortly later Kurchenkov and

Laletin [28]) an energy dependent cross section into their evaluation of the effective, tem-
perature dependent moments of the scattering kernel. They focused on an energy transfer
change in the vicinity of 238U scattering resonances compared to the asymptotic kernel.
They showed that neutrons predominantly gain energy in a collision at some energies in
the vicinity of resonances.
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In 1998, Rothenstein and Dagan [2] extended the work of Ouisloumen and Sanchez [1]
to the double differential, resonance dependent scattering kernel. This kernel described
for the first time the full secondary energy and angular distribution of neutrons scattered
with a nucleus at a resonance energy. They showed that the integration of their full double
differential kernel cover all angles gives exactly the isotropic solution of Ouisloumen and
Sanchez. The full double differential kernel for energy dependent cross sections is given
in the following as obtained by Rothenstein and Dagan [2]:

σTs
(
E → E ′, ~Ω→ ~Ω′

)
= 1

2πσ
T
s

(
E → E ′, µlab0

)
= 1

2π

√
A+ 1
Aπ

exp(E/kBT )
E

∫ ∞
0

dt
[
tσtabs (Er, 0)

]
e−t

2/A

[
H(t+ − t)H(t− t−)

∫ t+εmin

εmax−t
dx e−x

2 +H(t− t+)
∫ t+εmin

t−εmin
dx e−x

2
]

P (u, µ̂CM0 )
2π

4εmaxεminx2

B0sinϕ̂
2H(cosϕ̂+ 1)H(1− cosϕ̂)

(1.47)

where σtab(Er) is the tabulated value of the so called bound cross section σb at zero
Kelvin which is denoted by: σb(Er) = [(A + 1)/A]2σ(Er). H is the Heaviside function.
The speed variables t, x and ε describe neutron and center of mass velocities and are
given by t = u

√
A+ 1, x = c

√
A+ 1, ε = v

√
A+ 1 and ε′ = v′

√
A+ 1. εmax and εmin

are the larger and the smaller value of ε and ε′. t± is given by t± = (εmax + εmin)/2.
µ̂lab0 and µ̂CM0 are the polar scattering angles in the laboratory and in the center of mass
reference frame, respectively. P (u, µ̂CM0 ) is the scattering probability density function in
the center of mass reference frame.

In equation 1.47 the polar scattering angel µ̂CM0 is related to the angle ϕ by:

µ̂CM0 = A0 +B0 cosϕ̂

4t2x2 (1.48)

with:

A0 =
[
ε2 − x2 − t2

] [
ε′

2 − x2 − t2
]

(1.49)

B0 =
√

[(t+ x)2 − ε2]
[
(t+ x)2 − ε′2

]
[ε2 − (t− x)2]

[
ε′2 − (t− x)2

]
(1.50)

The expansion of equation 1.47 into Legendre moments is done by multiplying the
double differential kernel with 2πPn(µlab0 ), where Pn is the nth Legendre polynomial, and
by integrating over the polar scattering cosine µlab0 (see 1.2.1). The nth moment of the
resonance dependent scattering kernel is defined as:
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2
]

∫ 2π

0
dϕ
P (u, µ̂CM0 )

2π Pn(µ̂lab0 )

(1.51)
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Figure 1.7: Wigner-Wilkins scattering kernel of 238U at 6.67 eV and 1200 K

which is similar to the Legendre moments obtained by Ouisloumen and Sanchez [1].
The energy transfer kernel, i.e. the 0th moment of the scattering kernel, can be rewrit-

ten as:

σTs0 (E → E ′) =
√
A+ 1
Aπ

exp(E/kBT )
E

∫ ∞
0

dt tσtabs (Er)exp(−t2/A)[
H(t+ − t)H(t− t−)

∫ t+εmin

εmax−t
dxex

2 +H(t− t+)
∫ t+εmin

t−εmin
dxex

2
]

P (u, µ̂CM0 )

(1.52)

Figures 1.7 and 1.8 show the Wigner-Wilkins (based on equation 1.45) and resonance
dependent (based on equation 1.47) scattering kernel for 238U at 6.67 eV and 1200 K,
respectively. A similar representation is used as is done for the asymptotic scattering
kernel of figure 1.5 in section 1.2.3. In contrast to the asymptotic kernel, the integral of the
temperature dependent scattering kernels is equal to the Doppler broadened scattering
cross section. Besides the normalization, the temperature dependent scattering kernel
differs significantly from the asymptotic kernel. The neutron scatters to a much broader
energy range. In particular, an energy gain by the neutron is possible. In addition, in case
of the asymptotic kernel, the energy of the neutron is directly related to the scattering
angle. In case of the temperature dependent kernel, the energy distribution of a specific
scattering angle expands significantly.
The differences of the Wigner Wilkins and the resonance dependent scattering kernel

are discussed in detail in section 3.3.
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Figure 1.8: Resonance dependent scattering kernel of 238U at 6.67 eV and 1200 K

1.4 The Scattering Kernel in the Transport Equation
In todays reference neutronic codes either the asymptotic scattering kernel is used or the
Wigner-Wilkins approximation; yet not the resonance dependent scattering kernel. This
causes an important inconsistency in the very basic treatment of the neutron transport
equation. The transport equation for the neutron vector flux f at location r, in direction
~Ω and at energy E is:

1
v

∂f(E, r, ~Ω, t)
∂t

+ ~Ω · ∇f(E, r, ~Ω, t) + [Σs(E) + Σa(E)] f(E, r, ~Ω, t) =∫
~Ω′

∫ ∞
0

Σ(E ′ → E, ~Ω′ → ~Ω)f(E ′, r, ~Ω′, t)d~Ω′dE ′ + S(E, r, ~Ω, t)
(1.53)

where Σs(E), Σa(E) and Σ(E ′ → E, ~Ω′ → ~Ω) are the macroscopic scattering cross sec-
tion, the absorption cross sections and the macroscopic scattering kernel, respectively.

The use of the scattering kernel approximations leads to the following contradiction:
on the left side of the equation the scattering cross section depends evidently on energy
and temperature. On the right side, however, the double differential part of the scat-
tering cross section, namely the scattering kernel, excludes the energy and temperature
dependence.

In the documentation of the THERMR module of NJOY [25] this inconsistency in the
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transport equation is directly addressed:

"Strictly speaking, the scattering law for free-gas scattering given in Eq. (10) [ S(α, β)
equation] is only applicable to scatterers with no internal structure. However, many mate-
rials of interest in reactor physics have strong scattering resonances in the thermal range
(for example, 240Pu and 135Xe). The Doppler broadened elastic cross section produced
by BROADR is formally correct for a gas of resonant scatterers, but the cross section
resulting from Eq. (10) [S(α, β) equation] is not. In order to allow for resonance scatter-
ing in a way that at least provides the correct total cross section, THERMR renormalizes
the free-atom scattering to the broadened elastic cross section. The secondary energy
distribution will still be incorrect."

Several groups studied the impact of the analytic resonance dependent scattering kernel
compared to the asymptotic kernel. Ouisloumen and Sanchez [1] compared both energy
transfer kernels in view of the their energy dependence, up- and down-scattering prob-
abilities (see also 3.3.2) and average neutron energy after collision. Kurchenkov and
Laletin [28] performed similar comparisons. Bouland, Kolesov and Rowlands [29] investi-
gated the impact of the resonance dependent scattering kernel on the 238U resonance
absorption rate and the Doppler reactivity effect of a LWR pin cell compared to the
asymptotic kernel. An increased absorption and Doppler effect of 1% and 9 % respec-
tively was found. Dagan and Rothenstein [30] integrated the isotropic resonant kernel into
the fineflux OZMA code and confirmed results of Bouland et al. [29]. Similar results were
obtained by Kurchenkov and Sidorenko [31] who investigated the impact on a VVER pin
cell.
Dagan and Rothenstein [2] and Rothenstein [5] compared the resonance dependent scat-

tering kernel to the Wigner-Wilkins kernel with special emphasis on the secondary angular
distribution and showed the strong anisotropy in the laboratory frame of reference in the
vicinity of a pronounced resonance. Dagan [4] showed the impact of the resonant scat-
tering kernel on the benchmark of Tellier et. al. [32] using the Monte Carlo code MCNP
with S(α, β) scattering tables for the resonance range of 238U in a similar manner as it
is done for light nuclei. An increased Doppler effect of up to 17.5 % and an increased
238U resonance absorption of up to 2.1 % was found. Dagan and Broeders [33] extended
this investigation to LWR burn-up benchmarks and concluded an increased breeding of
239Pu.
Recently, Lee et al. [34] investigated the influence of the resonant kernel on an increase

of the LWR Doppler-coefficient (10 %) and on a criticality decrease for LWR (0.20 %)
and Next Generation Nuclear Plant (NGNP) (0.45 %), using a modified code version
of CASMO-5. Oberle [35] implemented the resonance dependent scattering kernel in the
fineflux solver ULFISP for group cross section generation and studied the impact on full
PWR core.
A detailed description of the analytic derivation of the resonance dependent scattering

kernel and its application is given by Dagan [36]. The impact of using the resonance
dependent scattering kernel on HTR reactor calculations is studied in detail in chapter
5.



2 A New Developed Stochastic
Doppler Broadening Method

In this chapter, the basic Doppler broadening equation 1.30 is solved by means of a new
developed Monte Carlo code called DOPPLER-MC. For the first time, it is possible to
perform stochastically the Doppler broadening of cross sections and in particular to deter-
mine stochastically the temperature and resonance dependent scattering kernel. Angular
moments as well as energy moments of the resonant scattering kernel are calculated. In
addition, this new code can be used to Doppler broaden scattering kernels employing the
Wigner-Wilkins approximation.
In the following, the code DOPPLER-MC is introduced and its convergence is dis-

cussed.

2.1 The Code DOPPLER-MC
A stochastic code named DOPPLER-MC was developed which simulates directly an
interaction of an incident neutron with a target nuclide. The code evaluates the effective
temperature dependent cross section of various reactions (such as total, scattering or
absorption cross section) as well as the secondary energy and angular distribution of
neutron and target in case of a scattering event. With these distributions the code
reconstructs the double differential scattering kernel.
DOPPLER-MC is based on a common method to sample the motion of the target

nuclide in addition to the movement of the neutron. In the manual of Monte Carlo
code MCNP [37] this method is referred to as "sampling the velocity of the target nucleus"
(SVT). In the following the theoretical model of the developed code DOPPLER-MC is
presented:

• In a first step, the code samples the velocity, i.e. the energy, of a specific target nu-
cleus (V , ET ), according to a probability density function based on the Maxwellian
distribution for a given temperature (equation 1.31). The direction of the target
nucleus with respect to the incident neutron is sampled with an isotropic distri-
bution in the laboratory frame of reference. µT denotes the cosine of the angle
between neutron and target directions.

• Then, the incident neutron kinetic parameters are transferred into the target-at-
rest system (TR) by subtracting the target velocity V from the neutron velocity
v. The relative velocity vr of the neutron is obtained. In this reference frame, the
zero Kelvin cross section σx (vr, 0) depicts the reaction probability of the specific
sampled nucleus and the neutron. In case of a scattering event, the secondary
parameters of the neutron, the energy after the collision E ′ and the cosine of the
scattering angle µTR0 in the TR frame, are evaluated with equations 1.23 and 1.24.



34 A New Developed Stochastic Doppler Broadening Method

• Finally, a weight (wi) is associated to the sampled pair of neutron and target,
which can be directly derived from the very basic equation (1.30) of the effective
cross-section:

wi = vr
v
σx (vr, 0) (2.1)

This weight denotes the probability that a neutron would react with the specific
modeled target. The sum of the weights of different iterations is collected. In case
of a scattering event the secondary neutron velocity and scattering angle are trans-
ferred back into the LAB system. The weight wi of each iteration is accumulated
in a specific energy-angle segment (∆E ′,∆µ0) of the outgoing neutron energy E ′
and the scattering angle µ0.

This sampling procedure is repeated N times. By accumulating all repetitive histories
of those weighted probabilities at each energy point of the zero K cross section, one gets
the Doppler broadened cross section:

σ (E, T ) = 1
N

N∑
i=1

wi (2.2)

In addition, the double differential part of the effective cross section, namely the scattering
kernel, can be evaluated by considering only a specific energy-angle segment ∆E ′,∆µ0):

∂σ (E, T )
∂E∂Ω = 1

N

∑
i=1

wi if E ′ and µ0 in (∆E ′,∆µ0) (2.3)

In case of the use of the Wigner-Wilkins approximation the cross section σx in equation
2.1 is set to be “one” for all energies. At the end of the run the obtained scattering kernel
has to be renormalized to the Doppler broadened cross section.
Figure 2.1 shows a scheme of the DOPPLER-MC program. Due to the stochastic

nature of the DOPPLER-MC code, the results obtained for the Doppler broadened cross
section and the kernel are always associated with a specific uncertainty. With increasing
the number of simulated collisions, the uncertainty however decreases and the result
converges to the theoretical value. A reliable convergence is reached when the associated
uncertainty is less than the experimental uncertainty of the measured cross sections.
As an example, the total and scattering cross section of 238U resonance peak at 36.67

eV and at 1200 K are stochastically Doppler broadened using the DOPPLER-MC code.
The convergence of the code is studied at this energy and temperature. For this, the
number of iteration is steadily increased until the stochastic results converge (figure 2.2).
After about 2 ∗ 104 iterations the stochastic solution converges.

2.2 Comparison of the Analytic and Stochastic Doppler
Broadening Methods

In this section, the stochastic Doppler broadening method is compared to the analytic
SIGMA1 method. In a first part, the developed code DOPPLER-MC and the NJOY
code are used to broaden several integral cross sections. A set of characteristic cross
sections is chosen for comparing different aspects of the Doppler broadening, namely
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input parameters for DOPPLER-MC :
incident neutron energy E in LAB system, reaction
type, 0 K cross section, mass of target, temperature

subroutine:
sample target kinetic
properties (SVT):

collision angle µT and energy ET

free gas model

transfer of the incident
kinetic parameters into
the TR reference frame:

relative neutron velocity vr

perform collision in the TR frame.isotropic scatter-
ing in CM frame

calculate reaction prob-
ability in TR frame:

σx (vr, 0)

scattering
event?

transfer of the sec-
ondary kinetic param-
eters back into the

LAB reference frame:
µ′, E ′

add wi (eq. 2.1)
into bin (∆E ′,∆µ0)

sum wi

sufficient
histories?

scattering
event?

evaluation of kernel:
∂σ(E,T )
∂E∂Ω (eq.2.3)

evaluate effec-
tive cross section:
σ (E, T ) (eq.2.2)

evaluate effec-
tive cross section:
σ (E, T ) (eq.2.2)

yes

no

yes

no

yes
no

Figure 2.1: Scheme of the DOPPLER-MC program (blue boxes denote steps inside the his-
tory iteration, red boxes denote analysis steps and dashed boxes denote model
assumptions)
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Figure 2.2: Convergence of the stochastic Doppler broadening algorithm for the scattering and
total cross section of 238U at 1200 K and 36.67 eV

resonance broadening, Doppler broadening of a constant cross section and broadening of
a 1/v-shape cross section.
In a second part, the DOPPLER-MC code is used to Doppler broaden stochastically

scattering kernels. These are then compared to analytically broadened kernels based on
equation 1.47. The JEFF 3.1 nuclear data cross sections library [13] is used with linear
interpolation.

Cross Section Comparison

The Doppler broadening of resonance cross sections leads to a decrease of the resonance
peak while the width broadens. Both, the stochastic DOPPLER-MC code and the NJOY
code are used to Doppler broaden the scattering and total cross section of 238U at 1200 K
and 600 K, respectively. The energy scale ranges from 32 to 40 eV. It covers the 3rd main
S resonance of 238U at 36.6 eV. Both methods give exactly the same Doppler broadened
cross sections (see figure 2.3).
In the low energy region, cross sections develop the so-called 1/v tail due to the Doppler

broadening. This originates from the 1/v term in the basic Doppler broadening equation
(1.30). The 0 K scattering cross section of 232Th for example is constant in the energy
range from 0.0001 eV to 0.01 eV. Figure 2.4 shows the 1/v tail of the 232Th scattering cross
sections at 300 K and 3000 K temperature in comparison to the constant zero K cross
section. DOPPLER-MC and NJOY give the same Doppler broadened cross sections.
A property of the basic Doppler broadening equation is that a zero Kelvin cross sec-
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Figure 2.3: Stochastic and analytic Doppler broadening of scattering σs and total σtot cross
section of 238U at 1200 K and 600 K

tion with a 1/v shape remains unchanged under Doppler broadening. The integration
in equation 1.30 is reduced to an integration over the Maxwell Boltzmann probability
distribution p(V ) which leads evidently to the value 1. The (n,α) cross section of 10B for
example exhibits a 1/v shape in the low energy range. The DOPPLER-MC code is used
to Doppler broaden stochastically this cross section for 300 K and 3000K. As can be seen
in figure 2.5 the anticipated behavior is clearly obtained.
All representative cases studied show that the stochastic procedure of Doppler broad-

ening gives exactly the same Doppler broadened cross section when compared to the
analytical SIGMA1 [24] based solution (equation 1.40) using in NJOY.

Comparison of Scattering Kernels

The DOPPLER-MC is used to calculate the 238U scattering kernel at 6.53 eV and at 1200
K temperature. This energy corresponds to the lower interference dip of the 6.67 eV main
S resonance. This stochastic kernel is compared to the scattering kernel produced by ana-
lytical means [30] based on equation 1.47 (figure 2.6). The contour of the kernel represents
the energy distribution of the scattered neutrons. Eight segments represent the angular
distribution of scattered neutrons. Unlike the kernel figures of the previous chapter, here
the segments are represented for comparison reasons only by separating lines instead of
colored areas. The stochastic and analytic kernel are in good agreement. However, the
stochastic kernels exhibit small numerical instabilities for the forward scattering segment
(0.75 - 1.0).
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Figure 2.4: Stochastic and analytic Doppler broadening of the scattering cross section of 232Th
in the energy region from 0.0001 eV to 0.01 eV at 300 K and 3000 K

Figure 2.5: Stochastic Doppler broadening of the (n,α) cross section of 10B at different tem-
peratures
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Figure 2.6: Stochastic and analytic resonance dependent scattering kernel of 238U at 6.53 eV
and 1200 K

In addition, the DOPPLER-MC and analytic kernel of 232Th at the interference range
(23.2 eV) of 2nd main S resonances at 1200 K are compared (figure 2.7). Again the
stochastic and analytic kernel agree completely for both, the energy and angular distri-
bution.

It should be noted that the stochastic method for Doppler broadening necessitate a
significant higher computer time compared to the SIGMA1 [24] approach. In addition, the
obtained values for the cross sections are subject to statistical uncertainties. However,
Fröhner pointed out [9] that even the SIGMA1 approach of Cullen and Weisbin is not
exact since the linear interpolation between tabulated cross sections introduces some
error. Milgram et. al. [38] proposed to use the method of antithetic variance reduction to
accelerate the convergence of the stochastic Doppler broadening method. A speedup by
a factor 2 is reached with a simple choice of a two-part antithetic transform referred to
as weighted stratification in [39].



40 A New Developed Stochastic Doppler Broadening Method

Figure 2.7: Stochastic and analytic resonance dependent scattering kernel of 232Th at 23.2 eV
and 1200 K



3 The DBRC Method for the
Resonance Dependent Scattering
Kernel in Monte Carlo Codes

Monte Carlo (MC) codes are widely used for radiation transport problems and in par-
ticular for nuclear reactor physics calculations such as the MCNP codes (MCNP4 [40],
MCNP5 [37], MCNPX [41]), MONK [42] or PSG2/Serpent [43].
In Monte Carlo transport codes, the transport problem is stochastically solved by

accumulating so-called histories of particles. A high precision regarding geometry can be
obtained. The movement of neutrons is directly simulated by probabilities of interaction
processes. The neutron undergoes several interactions with matter like elastic or inelastic
scattering until it is finally absorbed e.g. in an (n, γ) or a fission reaction. The neutron
contributes to specific tallied parameter (like criticality level, flux and reaction rates) in
its lifetime. Millions of particle histories are sampled in order to achieve a high confidence
of the tallied parameters. Monte Carlo codes are widely accepted as a reference method.
They should therefore use as few approximations as possible.
In the following, the commonly used approximative method of MC codes concerning

the free gas scattering kernel for heavy nuclei is discussed. This method is called the
“Sampling of the Velocity of the Target nucleus” (SVT). In order to introduce the cor-
rect, energy and temperature dependent, double differential scattering kernel this SVT
method is modified and the so-called “Doppler Broadening Rejection Correction” (DBRC)
is consequently developed. This correction is solely based on stochastic considerations.
The resulting impact of DBRC correction on the secondary parameters of scattered neu-
trons is discussed in detail. In the last section of this chapter an alternative method to
introduce the resonance dependent scattering into Monte Carlo Codes is presented. This
“S(α, β)-probability-table-method” is based on the analytic formula (equation 1.47) and
was developed by Rothenstein [5].

3.1 The Sampling of the Velocity of the Target Nucleus
Method

The method currently used in Monte Carlo codes to determine the energy and angle of a
scattered neutron is based on the “Sampling of the Velocity of the Target nucleus” (SVT)
approach mentioned in section 2.1. The underlying idea of this method is that a single
target is sampled with a specific velocity V and direction ΩT . This target is subsequently
used as a collision partner for a neutron. The exact target probability density function,
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based on the Doppler broadening equation 1.30, is:

P (V, µt) = σs (vr, 0) vrp (V )
2σs(E, T )v (3.1)

where V is the target velocity and µt is the cosine of the angle between incident neutron
and target. p(V ) is the target velocity distribution. A Maxwell Boltzmann distribution
is assumed. However MCNP e.g. further assumes that [37]:

"the variation of σs(vr, 0) with target velocity can be ignored. The justification for this
approximation is that (1) for light nuclei, σs(vr, 0) is slowly varying with velocity, and
(2) for heavy nuclei, where σs(vr, 0) can vary rapidly, the moderating effect of scattering
is small so that the consequences of the approximation will be negligible."

The probability density function becomes then:

P (V, µt) ≈
√
v2 + V 2 − 2V vµt V 2e−β

2V 2 (3.2)

This can be written as:

P (V, µt) ≈
{√

v2 + V 2 − 2V vµt
v + V

} [
V 3e−β

2V 2 + vV 2e−β
2V 2] (3.3)

which is used in MCNP to sample the target velocity. MCNP uses for the first part of
the equation 3.3 a rejection function R(V, µt) [44]:

R(V, µt) =
√
v2 + V 2 − 2V vµt

v + V
= vr
v + V

≤ 1 (3.4)

This part represents the ratio of the relative velocity to the laboratory velocity of the
neutron. The second part of equation 3.3 is sampled directly.
MCNP uses the SVT procedure if the energy of the neutron is less than 400 kBT (10.034

eV at 300 K and 41.363 eV at 1200 K) or if the target is 1H. It should be noted that
the scattering kernel method as described above is rather based on equation 1.45 than
on equation 1.30 because the cross section is assumed to be constant. Therefore MCNP
uses not a resonance dependent scattering kernel but the Wigner-Wilkins approximation
described analytically by equation 1.46.
If the neutron energy is higher than 400 kBT and the target is not 1H, the scattering

kernel is not Doppler broadened at all. In this case, the asymptotic kernel is used. This
means that MCNP effectively neglects the energy and temperature dependence of cross
sections with regard to the scattering kernel.

3.2 The new DBRC Method
In 1996, a stochastic method was proposed by Rothenstein [3] to account for the energy
dependent cross section in a scattering process. This method, namely the Doppler Broad-
ening Rejection Correction (DBRC) method, consists of a modification of the probability
density function which MCNP uses to simulate the target velocity V and the angle be-
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tween neutron and target µt. Equation 3.1 can be changed to:

P (V, µt) = C

{
σs (vr, 0)
σmaxs (vξ, 0)

}{
vr

v + V

}
{(v′ + V )p(V )}

= C

{
σs (Er, 0)
σmaxs (Eξ, 0)

}{
vr

v + V

}
{(v′ + V )p(V )}

(3.5)

with the normalization constant C:

C = σmaxs (Eξ, 0)
2vσs (E, T ) (3.6)

where σmaxs (Eξ, T ) is the largest scattering cross section in a specific energy interval in the
vicinity of the actual scattering cross section σs (E, T ). This energy interval corresponds
to the dimensionless interval which is used in the Doppler broadening algorithm SIGMA1
by Weisbin an Cullen [24]. In this interval, the argument of the integration in equation 1.40
has a non-negligible contribution to the integral. Typically an interval of ξ±4.0 is chosen
where ξ is the dimensionless speed of the neutron ξ =

√
AE/kBT . C is a normalization

constant. It neither depends on the target velocity V nor on the relative neutron velocity
vr, but only on the neutron velocity in the laboratory frame and the scattering cross
section. Note that the basic Doppler broadening equation 1.30 is an integration over the
target velocity.
Equation 3.5 can be written as:

P (V, µt) = C ′
{

σs (Er, 0)
σmaxs (Eξ, 0)

}
{

vr
v + V

}
{

2β4V 3e−β
2V 2 + (βv

√
π/2)(4β3/

√
π)V 2e−β

2V 2

1 + βv
√
π/2

} (3.7)

with
C ′ = σmaxs (Eξ, 0) (1 + βv

√
π/2)

2vσs (E, T ) β
√
π/2 (3.8)

The two last brackets of equation 3.7 are sampled in the MCNP code (see equa-
tion 3.3). The last line corresponds to the Maxwell-Boltzman distribution multiplied
by the factor (V + v). MCNP samples according to the distributions 2β4V 2e−β

2V 2 and
(4β3√π)V 3e−β

2V 2 which are associated by weights “one” and (βv
√
π/2), respectively,

with respect to the sum of the weights. Then a rejection method R1(V, µt) is used (see
equation 3.4) as a constraint on the choices of V and µt which corresponds to the second
bracket of equation 3.7. The first curly bracket of equation 3.7 is an additional constraint
on the choice of V and µt. This is exactly the term which MCNP neglects. Since this
ratio of cross sections can not exceed unity, a second rejection method is applied:

R2(V, µt) = σs (Er, 0)
σmaxs (Eξ, 0) ≤ 1 (3.9)

The DBRC method is in principle similar to the stochastic determination of the res-
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onant scattering kernel with DOPPLER-MC. The DOPPLER-MC weighting procedure
can be replaced by a rejection method similar to R2.
With the corrected probability density function (equation 3.7), MCNP is able to include

the effect of the energy dependence of the cross sections on the scattering kernel. However,
in his publication [3] Rothenstein stresses the fact that the ratio of cross sections can
lead to an extensive number of rejections in the vicinity of resonances, especially at the
interference dip on the lower energy side of a resonance. In addition, he saw a problem
of fundamental nature in the method of "sampling the velocity of the target nucleus".
It represents the sampling of an additional variable, namely the velocity of the target
nucleus, during the neutron history. The explicit dependence of the sampled value of V
might introduce a bias in the calculation. Rothenstein points out that the scattering of
the neutron should be not only be based on a singled sampled target but on the entire
double differential scattering kernel, which includes all possible target velocities. For
these reasons, Rothenstein abandoned the idea of a direct solution within MCNP and
focused on the development of the analytic double differential scattering kernel and its
introduction into NJOY (see section 3.4).
For this work the probability density function of MCNPX was changed according to the

above presented method. The new modified MCNPX version now performs the following
additional steps:

• When a neutron undergoes a scattering process with a nucleus in COLLIDN.F and
its energy is below a certain threshold (typically 210 eV), the code checks if the
zero Kelvin cross section of the nucleus is present in the data storage. If so, the
DBRC flag is set for an extended simulation of the target velocity. The best way
to load the natural cross section into the memory of the code is to use a flux tally
(f4) in any cell with a flux multiplier of the zero Kelvin scattering cross section of
the investigated nucleus.

• Within the subroutine TGTVEL.F the code searches the largest zero Kelvin scat-
tering cross section σmaxs (Eξ, T ) in the above mentioned finite interval ξ±4.0 if the
DBRC flag is set.

• The code simulates the target in its standard way. The relative neutron energy
in the TR frame is calculated. The additional rejection method is performed: if
a random number is larger than the ratio σs (Er, 0) /σmaxs (Eξ, T ) the code starts
a new simulation of the target. If the random number is smaller than the cross
section ratio the target is accepted and MCNPX continues in its usual way.

In the following, the differences between the DBRC corrected MCNP version and the
standard MCNP version are discussed. A validation of the new DBRC model is given in
chapter 4.

3.3 Comparison of the new DBRC and the Standard
MCNP Scattering Model

In this section, a detailed comparison of the standard MCNP scattering kernel, namely
the Wigner-Wilkins approximation, and the resonance dependent DBRC scattering kernel
is made in order to highlight the introduced changes in terms of the scattering physics by
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using the exact kernel. The energy transfer kernel, up- and down-scattering probabilities,
energy moments and angular moments of the resonance dependent kernel and of the
Wigner-Wilkins kernel of 238U are discussed.
The new DOPPLER-MC code can easily be used to create the standard MCNP scat-

tering kernel based on the constant cross section kernel (equation 1.45). To do this the
weight associated to a sampling of a neutron collision with a specific target (equation
2.1) has to be set to one.

3.3.1 Energy Transfer Kernel
The energy transfer is described by the zeroth moment of the scattering kernel which is the
contour of the kernel. Energy transfer kernels based on standard MCNP and on DBRC are
compared. Different nuclei at various temperatures and energies are considered. Figures
3.1 and 3.2 show the scattering kernel of 238U at the peak of the 6.67 eV resonance
and at its lower energy interference range at 6.53 eV. Three different temperatures are
considered: 100 K, 1000 K and 5000 K. The highest temperature is to some extent
unrealistic for reactor applications, but illustrates the general dependence of the kernels
with temperature. In the interference range the scattering cross section exhibits a dip
due to the potential and the resonance scattering interference (see section 1.1.2). The
area of the energy transfer kernel is equal to the integral cross section. Therefore, the
area of the kernel at the resonance peak decrease with increasing temperature (figure 3.2)
while the area of the kernel at the resonance dip increases as a consequence of a positive
temperature gradient. The difference between the standard MCNP and the resonance

Figure 3.1: Stochastic resonance dependent kernel (DBRC) and constant cross section kernel
(std. MCNP) of 238U at 6.67 eV and for various temperatures
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Figure 3.2: Stochastic resonance dependent kernel (DBRC) and constant cross section kernel
(std. MCNP) of 238U at 6.53 eV and for various temperatures

dependent scattering kernel is clearly shown in both figures. Neutrons tend to gain
energy in a scattering event at the energy of the resonance dip taking into account the
influence of the cross section (figure 3.2). At the resonance energy itself neutrons mainly
loose energy, however with the improved model the energy range to which neutrons are
scattered is smaller.

3.3.2 Up- and Down-Scattering Probabilities
A practical way to compare the standard MCNP and the DBRC kernel is to measure
the fraction of up and down scattered neutrons, i.e. the fraction of neutrons which have
a higher and lower energy after a scattering with a nucleus. Figure 3.3 shows these
fractions for 238U at a temperature of 1200 K in the energy range of 5 to 42 eV applying
the DBRC and standard MCNP kernel as well as the zero Kelvin scattering cross section.
The up- and down-scattering probabilities are similar for both approaches in the energy
range between the resonances where the scattering cross section is relatively constant.
However, in the vicinity of the resonances significant differences are pronounced. On
the lower energy side of the resonance the up-scattering is enhanced while on the higher
energy range the down-scattering is amplified for the resonance dependent model. On the
lower energy side of the 6.67 eV 238U resonance for example the up-scattering probability
increases from about 30 % in case of the standard MCNP kernel to about 85 % in case
of the DBRC kernel. On the higher energy side the up-scattering decreases to about 10
% while the down scattering increases consequently from 80 % to 90% when the DBRC
is considered. This trend means that more neutrons are scattered towards the resonance
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Figure 3.3: Up- and down-scattering probabilities (std. MCNP and DBRC) and scattering
cross section of 238U at 1200 K

energy. Therefore the probability of a subsequent resonance absorption increases.

3.3.3 Energy Moments of the Scattering Kernel
The scattering kernel is expanded into energy moments (see section 1.2.2 andWilliams [23])
and the mean neutron energy loss per collision with 238U is calculated at 1000 K temper-
ature in the vicinity of the 6.67 eV resonance (see figure 3.4). The standard MCNP and
DBRC scattering models are considered. The zeroth energy moment A0(E) is an integra-
tion of the energy transfer kernel and therefore gives the Doppler broadened cross section
itself. The mean energy loss < E −E ′ >av is calculated by the negative ratio of the first
A1(E) and zeroth A0(E) energy moment (equation 1.16). In case of the DBRC kernel
an energy gain is observed at the lower energy side of the resonance which is consistent
with an increased up-scattering probability (figure 3.3). The standard MCNP scattering
kernel however ignores the resonance and shows an almost flat mean energy loss in the
entire considered energy range. As concluded in the previous subsection, neutrons are
scattered towards the resonance energy when the correct physics is applied.

3.3.4 Angular Moments of the Scattering Kernel
In general, Monte Carlo transport codes like MCNP do not use Legendre moments to solve
the transport equation. Nevertheless, a comparison of the Legendre moments (equation
1.13) of the Wigner-Wilkins scattering kernel used by the standard MCNP code and
of the resonance dependent kernel, used by the DBRC MCNP version, illustrates the
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Figure 3.4: Energy moments and mean energy change of 238U scattering kernel at 1000 K (std.
MCNP and DBRC)

difference of secondary angular distribution of scattered neutrons. Figures 3.5 and 3.6
show the first and second moment of 238U scattering kernel at 6.5 eV in the dip of the
6.67 eV resonance at 1000 K. Significant differences of the first and second moment are
shown. In the case of the Wigner-Wilkins scattering kernel, most of the negative part
of the first moment is on the down-scattering energy side while the negative part of the
resonance dependent scattering kernel moment is on the up-scattering side. Backwards
scattering dominates when the first moment becomes negative. The second moments of
both kernels show strong deviations in the up-scattering region as well.
As mentioned in section 1.2.1, the angular Legendre moments of the scattering kernel

can be used to determine the mean cosine of the scattering angle µ̄lab0 (E) by applying
equation 1.14. Using the first moment of figure 3.5 at 6.5 eV and considering the Wigner-
Wilkins approximation a mean cosine of the scattering angle µ̄lab0 of 0.00280 is obtained
which means that scattering is slightly orientated in forward direction. This value is
similar to the theoretical zero Kelvin mean cosine for 238U calculated by equation 1.28.
In case of the resonance dependent scattering kernel the mean cosine µ̄lab0 is -0.00344 and
therefore slightly backwards directed.

3.4 The S(α, β) Probability Table Method
In this section, an alternative method to introduce the resonance dependent scattering
kernel into Monte Carlo calculations is presented. This method is based on S(α, β)
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Figure 3.5: First angular moment of the 238U scattering kernel at 6.5 eV and 1000 K (std.
MCNP and DBRC )

Figure 3.6: Second angular moment of the 238U scattering kernel at 6.5 eV and 1000 K (std.
MCNP and DBRC)
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probability tables which are commonly used to account for the impact of solid state
effects of light nuclei. The S(α, β) treatment is a complete representation of the neutron
scattering. A coupled energy-angle representation can be derived from the ENDF S(α, β)
scattering law:

σTs
(
E → E ′, µlab0

)
= σb

4πkBT

√
E ′

E
e−β/2S(α, β) (3.10)

where α and β are the momentum and energy transfer in dimensionless units:

α = E + E ′ − 2
√
EE ′µlab0

AkBT
, β = E ′ − E

kBT
(3.11)

The S(α, β) term in equation 3.10 denotes the probability of a specific momentum
and energy transfer. In the case of the short-time-collision approximation and energy
independent cross sections, the S(α, β) term can be written as [21]:

S(α, β) = e−
α2+β2

4α

2
√
πα

(3.12)

The S(α, β) tables can be used in the MCNP code via the so-called "mt-card" [37].
Typically three dimensional tables are used: for each point of the incident neutron energy
scale a distribution of secondary energies is represented by a set of equal probable final
energies. 16 or 32 equiprobable sets are commonly used for the secondary energies. For
each of those sets a set of equally probable cosine bins is defined. MCNP samples first
the secondary energy and then the scattering angle out of the probability sets. Linear
interpolation is used inside a specific angle set.
In 2004, Rothenstein [5] introduced the resonance dependent scattering kernel model

into the THERMR module of the NJOY code [25]. The model is based on a modified
version of equation 1.47 suitable for fast numerical evaluations. This work enabled to
generate resonance dependent S(α, β) tables for heavy nuclei which were first used by
Dagan [4] for 238U in a LWR pin cell benchmark. The generated scattering tables covered
an energy range of up to 210 eV. More than 1000 tables were necessary to take into
account the important changes of the scattering kernel in the vicinity of resonances. In
general, a fine energy grid has to be separately chosen for each nuclei due to the individual
resonance structures. Therefore, S(α, β) tables are less practical to use than the more
general DBRC method.

3.5 Summary
A new method for introducing the resonance dependent scattering kernel into Monte
Carlo Codes is presented. This method, based on an idea of Rothenstein [3], modifies
the existing “Sampling of the Velocity of the Target nucleus” approach by using solely
stochastic considerations. A detailed comparison of the new DBRC scattering kernel
and the standard MCNP kernel shows significant differences of the secondary energy
and angular distribution of scattered neutrons in the vicinity of cross section resonances.
The transfer kernel, up- and down-scattering probabilities, energy moments and angular
moments are used to illustrate these differences.



4 Validation of the DBRC Model
The implementation of the resonant scattering kernel effect and in particular the DBRC
model raised the need for an experimental validation to confirm that the free gas model
indeed governs the resonance scattering reaction and that the role of chemical binding
effect [45,46] is negligible. Two different kinds of experiments are presented: the Rensselaer
Polytechnic Institute 238U/232Th scattering experiments and the CERN nTOF 232Th
capture yield experiment. In addition, the DBRC based calculations are compared to
analytic S(α, β) based calculations for an LWR pin cell model.

4.1 RPI 238U and 232Th Scattering Experiment
In 2008, the Gaerttner Institue of the Rensselaer Polytechnic Institute (RPI) in Troy,
New York, performed the first 238U scattering experiment dedicated to investigate the
validity of the resonance dependent scattering kernel [47,48,49]. In the experiment of Danon
et. al., the RPI electron accelerator is used to create neutrons by bombarding a water
cooled tantalum (Ta) target. These neutrons are thermalized in the coolant and in
a polyethylene block located between target and sample. The produced thermal and
epithermal neutrons hit a depleted 238U sample which scatters the incident neutrons (as
shown on figure 4.1). The experiment is based on the time of flight (TOF) method. The
scattered neutrons enter a 25.6 m lang tube. At the end of this tube they are detected
by a Li-Glass detector. This long flight distance is used to determine the neutron energy.
Two different angles were analyzed: (1) 143.8° backwards scattering and (2) 38.9° forward
scattering.
In the original study, Danon et al. [47] compared the experimental results with a stan-

dard MCNP calculation, a MCNP calculation with enlarged energy range for the Wigner-
Wilkins scattering method, a standard Geant4 calculation and an MCNP calculation with
specific 238U resonance dependent S(α, β) scattering tables (see section 3.4). Their com-
parison showed that only the S(α, β) based calculation agreed with the experiment in
case of backscattering. In all other calculations the count rate of the neutrons scattered
by resonances was about half the size of the experimental values. In case of the forward
scattering, all calculations gave the same count rates and agreed well with the experi-
ment. Similar results were obtained for the experiments with thin and thick targets. In
order to validate the resonance dependent DBRC model the calculation of the scattering
experiment is performed with the new implemented model. Complete agreement to the
S(α, β) based calculation is found and consequently to the scattering experiment.

In 2009, the RPI experiment was redone using a 232Th target. The experimental setup
was arranged to obtain a backwards scattering angle of 156.7°. Two different 232Th
samples were: a thin sample of 0.1524 cm thickness with a density of 2.9265 1022 at/cm3

and a thick sample of 0.3048 cm thickness with a density of 2.9364 1022 at/cm3. Here the



52 Validation of the DBRC Model

Figure 4.1: RPI scattering experiment for 238U (presented at M&C 2009 meeting by Danon
et al. [47])

experimental result of the thin and thick target are used to validate the DBRC model.
Two different calculations are compared to the experiment. The first one is a MCNP

calculation with enlarged energy range for the Wigner-Wilkins kernel. The second is a
DBRC based calculation. TOF detector counts are simulated. Figures 4.2 and 4.3 show
the comparison for the scattering reflection of the 69.2 eV resonance for the thin and
thick target, respectively. A newly written code performs a regression analysis of the
simulated detector counts to the experimental values. The sum of the squared residuals
is minimized in an energy range of 67 eV to 71 eV. This energy interval is chosen as it
includes the entire reflection peak, the selfshielding range of the resonance and a small
part of the reflection of the higher energy wing of the resonance. It should be noted
that this analysis focuses on the shape of the reflection rather than on the peak level.
The simulated data is projected to the experimental energy grid using liner interpolation.
The sum of the squared errors (SSE), the mean squared residuals SSE/N and the mean
deviation of simulated and measured detector counts

√
SSE/N are calculated.

A full agreement of the DBRC simulated detector counts and the experiment within the
experimental uncertainty is found in case of the thin target (figure 4.2). The uncertainty
of the experiment is estimated to be less than 10 % in the vicinity of the resonance scat-
tering [50]. The mean deviation of simulated and mesured detector counts is

√
SSE/N=15

counts.
The Wigner-Wilkins based MCNP calculation underestimates the resonance reflection.

The top of the resonance reflection is only about 72 % of the experimental counts. In
addition, the width of the reflection is not calculated accurately. Therefore, the mean
squared residuals is significantly larger than in the case of the DBRC simulation. The
mean deviation is

√
SSE/N=45 counts.

The results of the experiment with the thicker 232Th target are less evident than the
results for the thin target. Nevertheless, the DBRC based calculation of the detector
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Figure 4.2: Comparison of the simulated and experimental 232Th resonance scattering-counts
for thin 232Th sample

Figure 4.3: Comparison of the simulated and experimental 232Th resonance scattering-counts
for thick 232Th sample
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counts fit much better the experimental values than the standard MCNP based calcula-
tions, however the agreement is less distinct (figure 4.3). In case of the DBRC calculation,
the mean deviation is 39 counts in the considered fit range. This mean deviation is 73
counts when the standard MCNP code is used. The MCNP underestimates the reflection
peak (77 %) and over estimates the reflection width.
The 232Th scattering experiments as well as the briefly mentioned 238U experiment show

clearly that the DBRC model introduced into MCNP improves the prediction capability
of scattering experiment simulations with the MC code.

4.2 nTOF 232Th Experiment
The second experiment being relevant for the resonance scattering kernel analysis was
performed at the neutron time-of-flight facility nTOF at CERN [51]. The CERN nTOF
team measured the 232Th capture cross section from 1 eV to 1 MeV. The CERN pulsed
proton beam was used to create neutrons with a lead target. The used 232Th sample
consisted of 99.5 % purity and an isotopic thickness of 0.1 mm. The nTOF team observed
that for some 232Th resonances the measured resonance shape did not agree with the
expected shape calculated by the data analysis code SAMMY [53,20] or by MCNP. This
was especially the case for the 69.2 eV resonance. Several studies were made to explain
the difference between the simulation and the experiment while none of them, like the

Figure 4.4: nTOF 232Th capture yield experiment (by Gunsing [52]): capture yield calculated
with standard MCNPX, with the resonance dependent version of GEANT4 and
MCNPX DBRC in comparison to the nTOF experimental data
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dead time of the detector or the background noise, was found to be coherent [51]. Although
the multiple scattering effect was considered, SAMMY uses the similar scattering model
as MCNP [54] (asymptotic model) based on constant cross sections and is therefore not
accurate.
Gunsing [52] investigated the impact of the resonance-dependent scattering kernel on

the shape of the 69.2 eV 232Th resonance. Gunsing integrated the zeroth moment of
the resonance dependent scattering kernel (equation 1.52) into the the Monte Carlo code
GEANT4 [55]. He used the new developed DBRC model for MCNP as well. Figure 4.4
shows the saturated capture yield of the 69.2 eV resonance of the 232Th experiment. The
focus is on the shape of the saturated resonance which exhibits a flat tableau like behavior
around the resonance energy.
Gunsing performed calculations of the capture yield with the modified GEANT4 code,

the standard MCNP and with the DBRC version of MCNP (figure 4.4). Standard MCNP
calculates a slope of the capture yield in the vicinity of the resonance energy. This
clearly does not match the experimental results which exhibits a rather flat behavior
of the capture yield. On the low energy side of the resonance standard MCNP largely
under-predicts the capture yield while on the higher energy side it over-predicts the yield.
Modified GEANT4 and DBRC MCNP, on the contrary, reproduce well the shape of the
experimental capture yield with exception of the high resonance energy side where they
slightly over-predict the capture yield.

4.3 Comparison of DBRC and S(α, β) Based MCNP
Calculations

In this section, both methods to introduce the resonance dependent scattering kernel
into MCNP, namely the DBRC method and the S(α, β) method, are compared based
on simple MCNP test case calculations. A standard LWR pin cell model is used which
is based on the geometrical specifications of a PWR subassembly benchmark proposed
by Porsch et al. [56]. An infinite array of identical fuel pins are modeled using reflective
boundary conditions. The fuel enrichment is 4 w/% 235U. A high fuel temperature of
TF=1200 K is assumed while clad and water temperature are 600 K. The criticality and
the 238U capture reaction rate are calculated.
S(α, β) scattering tables are prepared for 238U with 1260 energy points which cover

the energy range from 10−5 to 210 eV. 8 cosine and 16 cosine bins are used for the polar
angle distribution. All standard and S(α, β) calculations are performed with MCNPX
Beta Version 2.6.f. Cross sections are based on JEFF3.1 nuclear data files. The DBRC
method was implemented into the MCNPX Beta Version 2.6.f. The following four differ-
ent scattering options are applied for the 238U neutron scattering:

1. The standard MCNP version is used which employs the “Sampling of the Velocity
of the Target nucleus” (SVT) subroutine for neutrons with energy up to 400 kBT.

2. Resonance dependent S(α, β) scattering tables are used (8 polar scattering cosine
segments and an energy grid of 1260 points up to 210 eV to cover accurately all
main S resonances in this energy range).

3. Resonance dependent S(α, β) tables with 16 scattering cosine segments are used.
4. The new DBRC option is used for neutrons with energy up to 210 eV.
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Table 4.1: Criticality k∞ of a LWR pin cell at TF=1200 K applying different scattering models
Method k∞

(1) standard MCNP: k1 1.31137 +/-6E-5
(2) S(α, β) (8 bins): k3 1.30775 +/-6E-5
(3) S(α, β) (16 bins): k4 1.30772 +/-6E-5
(4) DBRC: k5 1.30791 +/-6E-5

Differences:
k2 − k1 -0.362 %
k3 − k1 -0.365 %
k4 − k1 -0.346 %
k4 − k3 0.019 %

Table 4.2: Capture reaction rate of a LWR pin cell at TF=1200 K applying different scattering
models

Energy bin Capture reaction rate r [arb.Unit] Differences
[eV ] (sdev. (1σ) < 4E-6) (sdev. (1σ) < 0.13 %)

std. MCNP: r1 S(α, β): r2 DBRC: r3
r2−r1
r1

r3−r1
r1

r3−r2
r2

4.0 - 9.88 1.108E-02 1.110E-02 1.110E-02 0.22 0.22 0.00
9.88 - 16.0 4.129E-04 4.119E-04 4.117E-04 -0.24 -0.28 -0.04
16.0 - 27.7 6.173E-03 6.313E-03 6.311E-03 2.27 2.24 -0.03
27.7 - 48.1 4.799E-03 5.079E-03 5.062E-03 5.84 5.48 -0.34
48.1 - 75.5 2.328E-03 2.371E-03 2.370E-03 1.83 1.81 -0.02
75.5 - 149 4.227E-03 4.262E-03 4.249E-03 0.83 0.53 -0.30

The results of the pin cell study (Table 4.1) show that the criticality calculation which
is based on the DBRC model (4) agrees well to the S(α, β) based calculations (2,3). The
difference is within the range of 20 10−5. The choice of either 8 or 16 cosine segments for
the angular distribution of the S(α, β) table has a negligible influence on the criticality
of the pin cell. The obtained criticality for the constant cross section scattering model
(1) is by far higher in comparison to all resonance dependent scattering models (2,3,4).
The difference ranges from 0.34 % to about 0.36 %.
In Table 4.2 capture reaction rates calculations are compared. The difference between

the DBRC and the S(α, β) tables based calculations with 16 segments is less than 0.3 %.
Contrarily, the standard MCNP calculation differs significantly from both, the DBRC
and the S(α, β) tables algorithm by about 5.8 % and 5.4 %, respectively.

4.4 Summary
The scattering experiments as well as the neutron capture experiment show that the
DBRC-method agrees much better with the experimental data than the standard MCNP-
method. Through the experimental confirmation and by the comparison to the analytic
based S(α, β) tables, it is assumed that a sufficient high degree of validation is reached
for the DBRC scattering model. This implies the necessity of the implementation of the
DBRC method. Beyond the common sense argument of the consistency of the transport
equation (see 1.4) the enhanced impact on criticality and reaction rates is pronounced.



5 Impact of the Resonant Dependent
Scattering Kernel on High
Temperature Reactors

The impact of the temperature and cross section dependent scattering kernel on neutron
physics calculations is investigated with regard to high temperature gas-cooled reactors
(HTGR or HTR). In the first section a brief overview of different HTR designs is given.
Then, the new DBRC scattering model integrated into MCNP is compared to the stan-
dard MCNP scattering model on the basis of unit cell calculations. This is done for
both the compact and the pebble fuel element design. The HTR-10 and the HTTR fuel
elements are used as reference designs. Finally, a detailed model of the entire Chinese
HTR-PM core is studied with regard to the scattering models.

5.1 High Temperature Reactors
The HTR is one of the promising nuclear reactors for future energy production of the
GEN-IV initiative [6,57]. The future and current HTR designs emphasize inherent safety
characteristics and a high coolant temperature leading to a high efficiency and possibilities
for process heat applications .
Already in the 1950s gas cooled nuclear reactors were considered for electricity produc-

tion which led to the construction and operation of the so-called MAGNOX reactors in
the UK and France. These reactors used metallic natural uranium fuel pin design with a
magnesium-aluminum cladding and pressurized CO2 as a coolant. Their coolant outlet
temperature was however limited to 415 °C. The MAGNOX reactors were followed by
the Advanced Gas-Cooled Reactor (AGR) which used uranium oxide as fuel contained
in a stainless steel cladding and reached a coolant outlet temperature of 675 °C, which
later on had to be reduced.
In the 1960s, the development of a High Temperature Reactor cooled by Helium and

based on spherical fuel elements, the so-called pebble-bed reactor, was initiated in Ger-
many and led to the construction and operation of the "Arbeitsgemeinschaft Versuch-
sreaktor" (AVR) pebble-bed reactor in 1968. The AVR had a power of about 45 MW.
This research reactor effort was followed by the construction of the Thorium High Tem-
perature Reactor (THTR) in the 1970s which went into operation in 1985. The THTR
had a largely increased power (770 MW) and could reach an outlet temperature of 750 °C.
Furthermore, the THTR was aimed to apply a thorium fuel cycle, using highly enriched
(93 %) 235U with 232Th as the fertile material.
At about the same time when the HTR development started in Germany, the UK and

the US HTR efforts focused on another type of reactors. In 1964, the OECD DRAGON
reactor reached first criticality, which used special pin type fuel. In 1967, the US Peach
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Table 5.1: HTR operating in the past
Reactor MAGNOX/AGR AVR DRAGON Peach Bottom THTR Fort St. Vrain

First power operation 1956 1967 1964 1967 1984 1976
Country UK / France Germany UK US Germany US

Power [MWe] 35-590 15 20 (th.) 40 300 330
Efficiency [%] 19-34 30 - 35 40 39
Fuel element Slugs Pebbles Rods (hex.) Cylinders Pebbles Hex. block
Fuel loading Nat. U UO2/(U,Th)O2/C2 U-ThC U-ThC U-ThO2 U-ThC

Enrichment 235U [%] 0 10/17 93 93.5 93 93
Coolant CO2 He He He He He

Coolant Tout [°C] 335-415 950 750 770 750 770
Power dens. [MW/m3] 0.5-1.8 2.2 14 8.3 6.0 6.3

Bottom HTR using cylindrical fuel pins in hexagonal elements was constructed and went
in operation. In 1968, the US began with the construction of the demonstration plant
Fort St. Vrain which went critical in 1976. This reactor used also hexagonal fuel elements
and was targeted to reach an outlet temperature of 770 °C.
Table 5.1 gives an overview of gas-cooled reactors that operated in the past.

5.1.1 HTR Design Characteristics
Nearly all HTR designs which are considered today use graphite both as structural mate-
rial and as reflector material. Graphite is also the neutron moderator causing a thermal
neutron flux spectrum depending on the HTR design. The fuel of this reactor type is
distributed in the core in fine dispersed manner. Typically a uranium dioxide kernel is
encapsulated into several protective layers which form coated fuel particles. The advan-
tage of such fuel particles is that each microsphere represents essentially a safe barrier to
retain all fission products during normal operation. These particles are introduced into
a graphite matrix. The matrix and an additional protective graphite layer form the fuel
elements. Spherical elements (pebbles) and cylindrical elements (compacts) are currently
used.
The todays design HTR is cooled by Helium. Helium outlet temperatures of up to

1000°C are envisaged in order to reach a high efficiency of electricity production or to
use the nuclear reactor for process heat applications. Due to dispersed coated particles
in the graphite matrix the heat conductivity of the fuel elements is about the same as the
heat conductivity of graphite. This enables relatively low fuel temperatures even though
high coolant temperatures are reached.

The HTR TRISO Fuel Particle

The most commonly used coated particles are the so called TRISO particles [58,59]. They
consist of the fuel kernel and four surrounding shells:

• The UO2 (or a UC) fuel kernel is the most inner part of the TRISO particle. It has
a diameter of about 500 µm.

• The first shell is a porous carbon buffer layer of about 95 µm thickness. This layer
provides a free volume for fission gases and prevents the coatings from damage
caused by recoiling fission fragments and by overpressurization.



5.1 High Temperature Reactors 59

Figure 5.1: TRISO coated particle [59]

• The second shell is the Inner Pyrolytic Carbon (IPyC) layer (ca. 40 µm thickness)
with a high density which seals the porous carbon layer. This layer is the first
part of the TRISO pressure vessel shell concept. This shell attenuates the fission
product migration and reduces the chemical interaction of fission products with SiC
layer.

• The third shell is a Silicon Carbide (SiC) layer (ca. 35 µm thickness). This shell
provides strength for the coatings and acts as a strong fission products release
barrier even at high temperatures up to 1600°C.

• The forth shell is the Outer Pyrolytic Carbon (OPyC) layer (ca. 40 µm thickness).
This second high density layer is again a fission products barrier and protects the
SiC layer.

The TRISO particle concept has the high potential of retaining fission products up
to a relatively high temperature: at normal operating conditions, the particles have a
temperature of up to 1100 °C. However, the TRISO particles are able to retain a high
fraction of the fission products in accident scenarios where the temperature is below 1600
°C. Below this temperature the particle maintain its integrity and only a fraction of about
4 x 10−5 of the TRISO particles show a defective coating (compared to 3 x 10−5 during
normal operation). Figure 5.1 shows the TRISO particle with its fuel kernel and different
protective layers.
It can be concluded that as long as the TRISO particle temperature stays below 1600°C

any hazardous radiation dose to the environment can be excluded for a least ca. 500 hours
in any accident [59].

5.1.2 Current HTR Designs
Today there are basically two working HTRs in the world: the Chinese HTR-10 pebble-
bed test reactor [60] and the Japanese HTTR block type test reactor [61]. The most ad-
vanced full scale HTR concept is the Chinese HTR-PM [62] which is based on the German
HTR-MODUL design [63]. All three reactors designs are presented in the following and
are of interest for the following studies concerning the impact of the resonance dependent
scattering kernel.

HTR-10

The Chinese research and development program for the high temperature gas cooled
reactor began in the mid-1970s with the the aim to construct a 100 MW thorium thermal
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Table 5.2: HTR-10 like TRISO particle design
layer material thickness [cm] density [g/cm3]

fuel kernel UO2 0.025 (radius) 10.4
buffer layer graphite 0.009 1.1

inner carbon layer pyrolytic graphite 0.004 1.9
SiC layer silicon carbide 0.0035 3.18

outer carbon layer pyrolytic graphite 0.004 1.9

breeder. Later the focus shifted towards an HTR design based on the HTR-MODUL (see
below) [60]. In 1988, the conceptual design of a 10 MW HTGR-Test Module (HTR-10)
began at the Institute of Nuclear Energy Technology (INET) of the Tsinghua University
in Beijing jointly with Siemens/Interatom [64]. The main objective of the HTR-10 was
to demonstrate the inherent safety features of the modular design. In 1992 the Chinese
government approved to build the HTR-10.
The HTR-10 is a small sized test reactor. The active part of the reactor is formed of

a pebble bed of 180 cm diameter and 197 cm in average height with 27000 pebbles (see
figure 5.2). The mean power density at full power condition is 2 MW/m3. Each pebble
contains about 5 g heavy metal (HM) which corresponds to about 8000 TRISO particles
per pebble. The fuel kernel is made of UO2 with 17 w% enrichment in 235U. The TRISO
geometric specifications are given in table 5.2 [65].
The reactor can be continuously recharged with new or recycled pebbles from the top,

while pebbles are discharged from below. The average residence time of the pebbles
in the core is 1080 equivalent full power days (EFPD). An average burn up of 80 000
MWd/tHM is reached [66].
The HTR-10 test reactor reached criticality in December 2000.

Figure 5.2: The Chinese HTR-10 [67] Figure 5.3: The Japanese HTTR [61]
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Figure 5.4: The HTTR fuel compact, rod and assembly [61]

HTTR

The High Temperature Engineering Test Reactor (HTTR) was designed by the Japan
Atomic Energy Research Institute (JAERI) and constructed at the Oarai Research Es-
tablishment in 1996 [61,68,69,70]. The main objectives of this reactor are to establish and
upgrade the technology basis for advanced high temperature gas-cooled reactors and in-
vestigate high temperature heat applications. The HTTR uses prismatic fuel blocks and
is designed to give a helium outlet temperature of 950°C and a thermal output of 30
MW. The first criticality was attained on November 10th in 1998 with an annular core
of 19 columns, while full power operation was reached on December 7th 2001 with an
average helium outlet temperature of 850°C. The aim is to have a hydrogen production
test facility coupled to the HTTR by 2015.
The HTTR core has an annular design in order to ensure that the fuel temperature

does not exceed 1600°C in case of loss of coolant accident. The annular design enhances
the decay heat removal since the maximal heat transfer pass is reduced. The decay heat
will be transferred through the fuel region, the side reflector and the reactor pressure
vessel without any active cooling system needed.
The core is composed of prismatic hexagonal blocks of 580 mm in height and 360

mm in width across the flats. These blocks are either fuel assemblies, control rod guide
blocks, replaceable reflector blocks or irradiation blocks. The active reactor core is in
height 290 cm and 230 cm in diameter and consists of 30 fuel columns and 7 control rod
guide columns (see figure 5.3). Each fuel column consists of 2 top reflector blocks, 5 fuel
assembly blocks and 2 bottom reflector blocks. The replaceable reflector ring consists of
12 reflector columns, 9 control rod columns and 3 irradiation columns. The replaceable
reflector ring is surrounded by the permanent reflector, which has an outer diameter of
425 cm and a height of 525 cm.
A block type HTR design has the possibility of fuel zoning and of burnable poison

introduction compared to the pebble bed design. However an on-line refueling like for
pebble bed reactors is not possible. Further, the entire active part of the HTTR core has
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to be replaced at the end of a cycle.
Figure 5.4 shows the design of a fuel assembly. Depending on the location of the

fuel assembly 31 or 33 fuel pin channels are bored into the hexagonal graphite block in
addition to a fuel handling hole and three burnable poison holes. A fuel rod consists of
graphite sleeve containing 14 fuel compacts. Each fuel compact contains about 13,000
coated TRISO fuel particles, which are embedded in a graphite matrix. 12 different low
uranium enrichments (2-6 % 235U) of fresh UO2 fuel kernel are used throughout the core
in order to flatten the axial and the radial power distribution [71].

HTR-MODUL and HTR-PM

The HTR-MODUL reactor [72,73] is the first HTR design concept which relies completely
on inherently safety aspects. Its concept is based on a standardized pebble bed reactor
unit of 200 MW which exhibit the inherently safety features of small high temperature
reactors. By combining several units, it is possible to transfer theses inherent safety
features to power plants of any desired power rating [63].
The HTR-MODUL is designed in a way that even in the case of complete loss of coolant

and failure of all active cooling systems the temperature of the fuel elements remains
within the limits at which there is practically no release of radioactive fission products.
This temperature is 1600°C for the used fuel elements. An active core cooling system
is not necessary for the decay heat removal during accidents since passive mechanisms
for the heat removal are sufficient to keep the core within the designed temperature
limit. Graphite is used as moderator and reflector materials. Unlike the common reactor
designs, the HTR-MODUL has a ratio of height to diameter of about 3/1. This special
design makes it possible to place the shut down and control rods solely in the reflector
elements. No in-core absorber rods are necessary which would have to penetrate into
the hot pebble bed by force. This requirement determines the maximal diameter of the
active core to 3 m. The average active height of the core is about 9.4 m. The mean
power density is limited to 3 MW/m3 and the mean core outlet temperature to 700°C.
The maximum fuel element temperature during normal operation is 850°C.
The spherical HTR-MODUL fuel elements (6 cm diameter in total, 5 cm diameter of

TRISO matrix) contain 7 g of uranium packed in about 11 600 TRISO particles. The
235U enrichment is 7.8 %.

The HTR-PM is the next step of the HTGR development in China after the HTR-10
test reactor. The HTR-PM is based on the HTR-MODUL design concept with a slightly
increased power [62] while conserving the inherently safety features. The HTR-PM plant
will consist of two nuclear steam supply systems, namely the core modules, which will
feed one steam turbine. Each module consist of a single zone core with a power of 250
MW thermal and a steam generator.
The HTR-PM module has an active core diameter of 3 m and a height of 11 m offering

space for about 420,000 fuel elements. The average power density is 3.22 MW/m3. Helium
outlet temperature is 750°C permitting an electrical efficiency of 42 %. Similar fuel
elements like for the HTR-MODUL and HTR-10 are used with a heavy metal loading
of about 7 g per pebble. The UO2 fuel of the TRISO particle is approximately 8.9
% enriched in 235U since the design burn-up had been increased from 80 GWd/t to 90
GWd/t.
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Figure 5.5: The HTR-MODUL reactor [63]
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5.2 HTR Unit Cell Calculations
Unit cell calculations are commonly used in deterministic codes to determine the neutron
flux spectrum which is then used to condensate fine group or continuous cross section
to broad group cross sections. In addition, for large reactor cores, where the leakage of
neutrons out of the core is small, a unit cell calculation provides a good estimate of the
core characteristics.
In this section, the impact of the resonance dependent scattering kernel on different unit

cells is investigated. First, a unit cell consisting of TRISO particles in a graphite matrix
is considered. Then, a unit cell with spherical fuel elements is investigated. Finally, the
compact fuel elements are considered.

5.2.1 TRISO Matrix Unit Cell Study
The TRISO matrix, i.e. TRISO particles embedded in a graphite matrix, is the basis of
the HTR concept. It is used by both the block type and pebble bed HTR designs.
In this section, the TRISO geometric design is similar to the HTR-10 TRISO design

(see table 5.2). The enrichment of the UO2 fuel is chosen to be 15 w% 235U. Each layer is
simulated explicitly. The TRISO pacticles are embedded in the matrix in a body cubic
centered (BCC) way. Reflective boundary consitions are used at all six sides of the cubic
unit cell. The temeprature of the graphite matrix TM is always kept constant at 1200 K.
A parametric study of the TRISO matrix with different TRISO packing fractions (TPF)

and different kernel temperatures (Tf ) is presented in the following. The TRISO packing
factor is defined as the volume fraction of the TRISO particles in the matrix:

TPF = VTRISO
VMATRIX

(5.1)

Each calculation is performed twice: the first calculation is done with the standard
MCNP version, the second one with the modified DBRC version of MCNP. The resonance
dependent scattering kernel method is only used for 238U. In this study, 238U is expected
to be the only nucleus influenced by the DBRC correction due to its well pronounced
resonance structure. 235U has as well a distinct resonance profile, however the neutron
reaction rates are dominated by the fission process.
In the following, the impact of the resonance dependent scattering kernel on criticality

and reaction rates is discussed. The influence of specific resonances and of the kernel size
is analyzed.

Methodology of the Comparative Studies

All calculations are performed with MCNPX beta version 2.6f [41,74] and JEFF3.1 cross
section data [13]. For the burn up studies the integrated burn up module CINDER of
MCNPX is used.
An extended version of MCNPX beta version 2.6f is created which includes the DBRC

scattering kernel. The improved resonance scattering treatment is carried out for energies
of up to 210 eV if not otherwise specified. This energy range is chosen since it covers the
first eight main S resonances of 238U, which is the most important nucleus in this study.
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It should be noted that the original scattering treatment in the relevant epithermal
energy range is identical in MCNP(5) and MCNPX. The DBRC modifications are valid
for both codes.
In the following, the corrected MCNP version will be referred as DBRC. The precision

of the Monte Carlo calculations, i.e. the number of sampled histories per cycle and
number per cycle, is chosen in a way that the results of the standard and DBRC MCNP-
versions are well separated with regard to the standard deviations.
The DBRC version of MCNP need a higher computational effort compared to the

standard version. This is mainly due to the multiple rejections of sampled targets. For
unit cell calculation the computational time increases by up to 20 %. For full core
calculations the increase is less than 5 %.

Influence of the DBRC Kernel on Criticality

The multiplication factor of the DBRC based (k∞,DBRC) and std. MCNP based (k∞,std.MCNP )
calculations are depicted in table 5.3 for different TPF and fuel temperatures. The crit-
icality shift:

dk/k = (k∞,DBRC − k∞,std.MCNP )
k∞,std.MCNP

(5.2)

is plotted in figure 5.6. The criticality of the DBRC calculation is always lower than
the one of the std. MCNP calculation. The difference increases with increasing packing
fraction and fuel temperature up to -1.250 %. Here, the temperature is important since
the deviation of the Wigner-Wilkins (and more over of the 0 K scattering kernel) to
the resonance dependent scattering increases with temperature. The fuel to moderator

Table 5.3: Criticality of the TRISO matrix in dependence of TRISO packing fraction
(TPF)and fuel temperature

TPF DBRC std. MCNP
[%] k∞,DBRC sdev. (1σ)[10−5] k∞,std.MCNP sdev. (1σ)[10−5]

Tf=800 K

1 1.68391 25 1.68467 26
10 1.27481 36 1.27975 38
25 1.04738 31 1.05227 32
35 1.0099 31 1.01431 27

Tf=1200 K

1 1.67476 31 1.67579 29
5 1.44815 36 1.45363 39
10 1.2333 38 1.23986 37
15 1.11494 38 1.12196 42
25 1.00772 32 1.01535 31
35 0.97467 29 0.9824 26

Tf=1800 K

1 1.66486 26 1.66628 27
10 1.18638 37 1.19711 36
25 0.96151 36 0.97393 31
35 0.9349 29 0.94658 27
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Figure 5.6: Difference of criticality between DBRC and std. MCNP based calculations for
different TRISO matrix packing fractions and temperatures

ratio determines the neutron spectrum in the fuel kernels (see figure 5.7). The flux is
shifted towards the resonance region with increasing TPF . Therefore the influence of
the resonance dependent scattering model increases with the TRISO packing factor. The
packing fraction of an HTR pebble ranges from 5 % to 10 %. In case of an HTR compact
the packing fraction is about 30 %.

Influence of the DBRC Kernel on Reaction Rates

The influence of the resonance dependent DBRC kernel on the capture reaction rate of
238U in the fuel kernel of the TRISO particles is studied for different TPF at Tf=1200 K
(see figure 5.8). Different energy groups are used. It is important to note that the first
three main S resonances of 238U at 6.67 eV, 20.87 eV and 36.7 eV are in energy groups
two, four and five, respectively. The energy group seven gives the 238U neutron capture
reaction over the total energy range up to 107 eV. The main increase of the neutron
capture of up to 6 %, due to the new DBRC model, takes place in the vicinity of the
20.87 eV and 36.7 eV resonances in groups four and five.
For higher TPF the neutron capture in the first three groups decreases to some extent.

Due to the increased neutron absorption of the pronounced resonances in groups 4 and 5,
the resonance escape probability of those resonances decreases. Therefore the flux, and
consequently the absorption in these groups, decreases when the DBRC model is used.
The total neutron capture of 238U increases by about 0.5 % to 1 % depending on the

TPF. This increased neutron capture of 238U leads to a decrease of the multiplication
factor as shown in figure 5.6 and leads subsequently to a higher 239Pu production as will
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Figure 5.7: Neutron spectrum for different TPF at Tf=1200 K

be discussed in section 5.2.2.

Influence of DBRC Kernel of Specific Resonances on Criticality

The influence of the resonance dependent scattering kernel on reactor parameters differs
strongly from each resonance. Evidently, the height of the resonance, e.g. σ0 in the
SLBW formalism, is important. The resonance energy is also of interest as it determines
how strong the Doppler broadening effect on the scattering kernel is. And finally the
ratio of the scattering to total Γ-widths Γn/Γt conditions the probability of a scattering
event at the resonance energy. An important parameter is therefore the ratio Γn/Γγ
which indicates whether a resonance is dominated by radiative capture or by scattering
(see table 5.4). A low ration (Γn/Γγ < 1) implicates that capture is more probable than
scattering.
Figure 5.9 shows the neutron flux in the vicinity of the first four main S resonances

of 238U of the DBRC and std. MCNP calculation. For this comparison, a high TPF of
35 % is chosen due to the well pronounced influence on the scattering model. For the
6.67 eV resonance, the neutron fluxes based on the different scattering models show only
small deviations. This resonance is dominated by neutron absorption. The ratio of the
scattering and radiative Γ-widths Γn/Γγ is about 0.064. In the vicinity of the 20.87 eV
resonance the DBRC based neutron flux deviates from the standard MCNP flux on the
lower energy side of the resonance. Standard MCNP calculations largely overestimates
the flux. This resonance has a Γn/Γγ ratio of about 0.440 which enhances the importance
of the resonance dependent scattering kernel. The 36.7 eV resonance flux with a Γn/Γγ
ratio of 1.466 shows a similar behavior. Again an overestimation of the flux on the lower



68 Impact of the Resonant Dependent Scattering Kernel on HTR

Figure 5.8: Relative difference of the (n,γ) reaction rate of 238U of DBRC and std. MCNP
based calculations for different packing fractions TPF (Tf=1200 K). Energy
groups [eV]: 1: 0.0 - 4.0, 2: 4.0 - 9.877, 3: 9.877 - 15.97, 4: 15.97 - 27.7, 5:
27.7 - 48.05, 6: 48.05 - 107, 7: total range

Figure 5.9: Comparison of neutron flux in the vicinity of four 238U resonances for DBRC and
std. MCNP based calculations (TPF=35 % and Tf=1200 K)
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Table 5.4: Resonance parameter of 238U s-wave resonances between 0 and 210 eV
E0 Γt Γn Γγ σ0 Γn/Γt Γγ/Γt Γn/Γγ

6.673 2.448E-02 1.476E-03 2.300E-02 2.372E+04 0.060 0.940 0.064
20.871 3.298E-02 1.007E-02 2.291E-02 3.842E+04 0.305 0.695 0.440
36.682 5.644E-02 3.355E-02 2.289E-02 4.255E+04 0.594 0.406 1.466
66.030 4.759E-02 2.423E-02 2.336E-02 2.025E+04 0.509 0.491 1.037
80.747 2.488E-02 1.877E-03 2.300E-02 2.453E+03 0.075 0.925 0.082
102.557 9.445E-02 7.103E-02 2.342E-02 1.925E+04 0.752 0.248 3.033
116.893 4.833E-02 2.534E-02 2.299E-02 1.178E+04 0.524 0.476 1.102
145.665 2.441E-02 8.848E-04 2.353E-02 6.533E+02 0.036 0.964 0.038
165.316 2.726E-02 3.199E-03 2.407E-02 1.864E+03 0.117 0.883 0.133
189.681 1.939E-01 1.704E-01 2.356E-02 1.216E+04 0.879 0.121 7.231
208.525 7.285E-02 4.994E-02 2.291E-02 8.633E+03 0.686 0.314 2.180
based on JEFF3.1 [13] and JANIS 3.0 [14] .

energy side of the resonance can be noticed. The forth 238U main S resonance at 66.0 eV
has a Γn/Γγ ratio of about 0.512. Std. MCNP still overestimates the neutron flux but
due to the higher energy the differences become smaller.
In order to investigate the influence of specific resonances on the criticality of the pebble

unit cell the DBRC scattering model is applied only in certain energy intervals (see table
5.5). In the remaining energy interval up to 210 eV the Wigner-Wilkins scattering model
is used. The energy segmentation is chosen in a way that the first 3 s-wave resonances lie
within separated segments. The higher energy range is divided into three intervals. The
DBRC kernel applied in the vicinity of the 36.7 eV resonance has the strongest impact on
k∞ compared to the case where only the Wigner-Wilkins kernel is applied (k∞,WW ). The
criticality shift is about -0.5 %. This shift reduces to -0.274 % in case of the influence
of the 20.87 eV resonance scattering kernel. The influence of the first 238U resonance is
low due to the Γn/Γγ ratio of 0.064. The impact of the higher resonance is small. The
criticality difference is only of the order of two standard deviations. Dagan [4] found that
in case of an LWR pin cell the influence of the higher 238U resonances (50 eV - 210 eV)
is less than 10 % of the total effect of the resonance dependent scattering kernel.

Table 5.5: Influence of the 238U resonance dependent scattering kernel of specific energy in-
tervals

DBRC energy range [eV] k∞ sdev. (1σ)[10−5] k∞-k∞,WW [10−5] sdev. (1σ)[10−5]

– (k∞,WW ) 0.98255 27 – –

4 - 13 0.98199 27 -56 38
13 - 28 0.97981 25 -274 37
28 - 50 0.97769 27 -486 38
50 - 90 0.98231 28 -24 39
90 - 150 0.98281 29 26 40
150 - 210 0.98236 27 -19 38

4 - 210 0.97467 29 -788 40
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5.2.2 HTR Fuel Pebbles
In a pebble bed reactor, the above studied TRISO matrix is introduced in spherical fuel
elements (pebbles). In most designs the pebbles consist of a spherical fuel matrix zone
with a radius of 2.5 cm and a pure graphite protective layer of 0.5 cm thickness. These
pebbles are then introduced in the reactor core. They occupy about 61 % of the core’s
volume when randomly distributed in the core i.e. the Pebble Packing Factor (PPF) is
0.61.
In this section, unit cells of pebbles with different heavy metal loading are studied in

view of the resonance dependent scattering treatment and the introduced reactivity shift.
The unit cell consists of Body Cubic Centered (BCC) arranged pebbles. The optimal
PPF in a BCC lattice is 0.68. In the unit cell case the BCC pitch between the pebble is
chosen to give a PPF of 0.61. This means that there is a small gap between the pebbles.
The TRISO particles in the matrix of the fuel zone of the pebble are arranged in a BCC
lattice as well. The TPF is chosen to give a specific heavy metal (HM) content per pebble.
Each TRISO layer is model individually.
The reference pebble design is based on the HTR-10 pebble with the geometry data

given in table 5.2. Due to the small sized core of the HTR-10 the neutron leakage is high
(about 30 % [65]). Therefore the enrichment of the fuel is relatively high (17 w% 235U).
The HTR-10 reference heavy metal loading per pebble is 5 g which corresponds to a TPF
of 5.3 %. The graphite temperatures of the matrix and of the pebble shell are constant
in all studied cases and assumed to be 1200 K while the fuel temperatures varies from
800 K to 1800 K.

Influence of the DBRC Kernel on the Pebble Unit Cell Criticality

Table 5.6 gives the criticality of the unit cell calculations for the different considered cases.
The standard MCNPX scattering model and the resonance dependent DBRC scattering
model are used. The negative Doppler reactivity effect of the UO2 fuel decreases the
criticality with increasing fuel temperature for all cases. In addition, the criticality de-
creases with increasing heavy metal loading per pebble due to lower moderator to fuel
ratio. The relative difference of the criticality dk/k depending on the scattering model
are shown in figure 5.10. For all considered cases there is a clear trend to an increased
negative reactivity shift with increasing temperature. The case of 12 g HM per pebble
and 1800 K fuel temperature gives the most significant criticality shift of about -0.600
%. This shift can be related to a deviation of the neutron flux in the vicinity the 238U
resonances and the corresponding increased neutron absorption in the same manner as it
is show in section 5.2.1. At TF=1200 K the neutron absorption of 238U is underestimated
by standard MCNP of about 1.1 % and 1.3 % for the case of 5 g and 10 g HM per pebble,
respectively.

Influence of the DBRC Kernel on the Doppler Reactivity Coefficient

Since the criticality shift between the approximating standard MCNP scattering model
and the resonant dependent DBRC model increases with temperature it is of high interest
to study the Doppler reactivity fuel coefficient. This temperature coefficient takes into
account the increased neutron absorption by Doppler broadened resonances when the
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Figure 5.10: Difference in criticality between DBRC and std. MCNP based calculations for
different HM contents and fuel temperatures

Table 5.6: Criticality of a pebble unit cell for different HM contents and fuel temperatures
HM/peb. 5 g 7.5 g 10 g 12 g
TPF 5.3 % 7.54 % 10.05 % 12.06 %

Criticality k∞ sdev.(1σ) k∞ sdev.(1σ) k∞ sdev.(1σ) k∞ sdev.(1σ)
[10−5] [10−5] [10−5] [10−5]

Fuel Temperature: 800 K

std. MCNP 1.63131 34 1.55031 26 1.47312 28 1.42845 27
DBRC 1.62989 34 1.54848 27 1.46993 27 1.4251 28

Fuel Temperature: 1000 K

std. MCNP 1.61998 29 1.53625 29 1.45649 29 1.4105 30
DBRC 1.61737 29 1.53317 26 1.45195 27 1.40639 27

Fuel Temperature: 1200 K

std. MCNP 1.61038 27 1.52349 32 1.44219 34 1.39549 33
DBRC 1.60775 25 1.52001 26 1.43698 28 1.38981 28

Fuel Temperature: 1500 K

std. MCNP 1.59834 25 1.50823 28 1.42319 28 1.37566 28
DBRC 1.59451 25 1.5033 28 1.41732 29 1.36903 26

Fuel Temperature: 1800 K

std. MCNP 1.58811 30 1.49472 31 1.40799 41 1.35897 32
DBRC 1.58391 25 1.48905 28 1.40057 28 1.3507 28
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Figure 5.11: Pebble unit cell reactivity calculated with DBRC and std. MCNP for different
HM contents per pebble and fuel temperatures

fuel temperature TF increases. The Doppler effect is primarily due to the epithermal
resonances of non fissionable fuel nuclei like 238U.
It can be defined as [8]:

αDTF = ∂ρ

∂TF
(5.3)

where ρ is the reactivity defined as:

ρ = k − 1
k

(5.4)

Figure 5.11 shows the reactivity ρ of the standard MCNP and DBRC based pebble
unit cell calculations which correspond to the criticality values of table 5.6. Evidently,
the reactivity shows the same behavior as the criticality i.e. with increasing temperature
and heavy metal content, the reactivity decreases.
Cubic regressions are performed in order to fit an equation ρ(T ) to the reactivity values

of figure 5.11. The derivation of these equations give the Doppler reactivity coefficients as
a function of temperature ∂ρ(T )

∂T
with respect to the standard deviations of the initial crit-

icality calculation. Figure 5.12 indicate the trend of the temperature dependent Doppler
reactivity coefficient. For higher fuel temperatures the feedback becomes smaller i.e. the
coefficient gets less negative. The feedback increases with the HM content due to higher
amount of the main resonance absorber 238U. For all considered pebbles and tempera-
tures the DBRC based Doppler reactivity coefficient calculations (dashed lines) are more
negative than the standard MCNP based coefficient (solid lines). The difference between
the two calculations range from 5 % to 10 %. In other words, the standard version of
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Figure 5.12: Pebble unit cell Doppler reactivity coefficient calculated with DBRC and std.
MCNP for different HM contents and fuel temperatures

MCNP largely underpredicts the Doppler reactivity feedback especially for higher HM
content pebbles.

239Pu Concentration and Criticality during Burn up

The previously discussed reactivity shift between the standard MCNP model and the
resonance dependent DBRC scattering model is due to an increased neutron capture
of 238U. This leads to an increased production of the fissile Pu isotope 239Pu via the
production chain of a neutron capture and two subsequent beta decays:

238U + 1n → 239U

239U → 239Np + e− + ν̄e
239Np → 239Pu + e− + ν̄e

where 239U and 239Np decay (β− decay) by emission of an electron e− and an antineutrino
ν̄e with the half life of T239U

1/2 =23.5 min and T
239Np
1/2 =2.33 days, respectively.

The 5 g and 10 g heavy metal per pebble units cell cases are used to perform burn
up studies. An HTR-10 like power density of 370 W per pebble is chosen. Fuel and
graphite temperatures are 1200 K. It is assumed that solely the fuel composition changes
during burn up. All TRISO fuel kernels deplete uniformly up to a bun up rate of about
140 GWd/t. This rate is larger than the reference HTR-10 BU of 80 GWd/t. Collision
rates of 238U are calculated with an uncertainty of less than 0.1 % in order to achieve a
sufficient precision for the 239Pu concentration.
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Figure 5.13: 239Pu inventory per pebble during burn up and difference depending on scattering
model (5 g HM per pebble case)

Figure 5.14: 239Pu inventory per pebble during burn up and difference depending on scattering
model (10 g HM per pebble case)
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Figure 5.13 and 5.14 show the evolution of the 239Pu content per pebble and the
difference depending on the scattering treatment for both considered cases of 5 g and 10
g heavy metal per pebble initial loading. The 239Pu concentration at the beginning is
zero and increases during burn up due to neutron capture of 238U. A peak concentration
depending on the heavy metal content is reached. At this point the production of 239Pu is
equal to the its removal by mainly fission. Afterwards the 239Pu concentration decreases
again. The decrease of the 235U concentration as main fissile material is compensated by
burning 239Pu. Due to a lower 235U content per pebble the peak 239Pu concentration is
reached earlier for the case of the lower HM content per pebble. In addition, the peak
amount of 239Pu per pebble is higher in the case of higher HM loading per pebble due
to a higher flux in the resonance region of 238U. Both cases indicate that the resonance
dependent scattering kernel of the DBRC calculation leads to a higher 239Pu build up
compared to the standard MCNP calculation. After the high burn up of 140 GWd/t
the 239Pu content of the DBRC based calculation is increased of about 2.0 % and 2.4
% compared to std. MCNP calculation for the low and high heavy metal content cases,
respectively.

Impact of 240Pu Resonant Scattering Kernel

The plutonium isotope 240Pu is mainly produced by a neutron capture of 239Pu. 240Pu
is significantly less fissile than its precursor 239Pu. The 240Pu thermal and epithermal
cross section is dominated by capture and elastic scattering. It exhibits, among other
resonances, a remarkably large scattering and absorption resonance at 1.056 eV as well
as a scattering dominated resonance at 66.2 eV with a Γn/Γγ ratio of 1.7. Therefore,
the impact of the resonance dependent scattering kernel of 240Pu is investigated in this
section.
In order to investigate the maximum influence of the resonance dependent scattering

kernel of 240Pu a unit cell of a pebble with a high burn up (140 GWd/t) is studied. At
this burn up the 240Pu fraction amounts to about 0.55 % of the total actinide vector.
Again, DBRC and std. MCNP based criticality calculations are compared.
The sensitivity study shows that the scattering model regarding 240Pu has practically

no influence on criticality and neutron flux shape. This is mainly due to the fact that
the concentration of 240Pu is very low compared to 238U. In addition, the low energy
range, including the 1.056 eV 240Pu-resonance, is dominated by capture. Hence, it is
very improbable that a neutron scatterers with 240Pu in the vicinity of a resonance and
then undergoes a capture by the very same resonance. The lowest resonance with an
acceptable ratio of scattering to total cross section is at 66.2 eV. However, this resonance
overlaps with the 66.6 eV resonance of 238U. This means that at this energy 238U capture
dominates the reaction rates.

Impact of the 232Th Resonant Scattering Kernel

In the seventies and eighties, it was considered to employ a 232Th fuel cycle for an HTR.
A fuel cycle based on 232Th can significantly reduce the production of nuclear waste.
The build up of higher actinides, especially americium and curium, is strongly reduced
due to the lower atomic number. The impact of a resonance dependent scattering kernel
of 232Th is investigated based on a pebble unit cell calculation. The analyzed pebble
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Figure 5.15: Neutron flux in the vicinity of the 69 eV 232Th resonance

contains ThUO2 fuel with 12 g heavy metal. The heavy metal vector consists of 50%
fertile 232Th and 50% of uranium (93 % enriched 235U). The TRISO and pebble geometries
are the similar to the previous studies. All temperatures are considered to be 1200 K.
The impact of the 232Th resonance dependent scattering kernel is small considering the

criticality of the unit cell. The shift is only about 0.040 % with a standard deviation (1σ)
of 12 10−5. The 232Th resonance at 69.2 eV is expected to show the strongest sensitivity
on the scattering model due to a high Γn/Γγ ratio. Nevertheless, the neutron flux in the
vicinity of this resonance is only slightly changed by the DBRC introduction.
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Figure 5.16: HTTR pin cell model [71]

5.2.3 HTR Fuel Compacts
In this section, the impact of resonance dependent scattering kernel on block type HTRs
is investigated. The TRISO matrix studied in section 5.2.1 is inserted into so-called
compacts. The fuel design is based on the existing Japanese HTTR design (see 5.1.2).
First a pin cell model of the fuel compact is studied, then hexagonal fuel element blocks
are investigated.

Criticality of a Pin Cell Model

The HTTR pin cell model of the fuel block is of special interest to study with regard to
the impact of the scattering model due to the high TRISO packing factors. Commonly, a
one-dimensional pin cell model is used in deterministic codes to determinate for resonance
group cross sections as it is done by Fujimoto et al. [71] for the HTTR. The model itself
represents just one fuel pin with surrounding coolant and graphite layers (see Figure 5.16).
The thickness of the graphite layer is chosen according to the relative graphite volume of
the hexagonal fuel blocks to one fuel pin. The cross section of the pin cell is therefore the
same as the fuel block cross section divided by the number of fuel rods [71]. Fuel kernels
in the fuel compact are arranged in a cubic centered way. The specific TRISO packing
factor of the modeled pin is conserved. Axial and radial reflective boundary conditions
are applied.
Three different pin cells were investigated:

• Pin cell 1 represents a hexagonal fuel block (layer 1 and fuel zone number 4 of
HTTR specifications [71,69,70]) with a relatively high 235U enrichment of 9.9 w% and
a TRISO packing factor of 29.6 %. The pin cell is based on a fuel block containing
31 fuel pins (R1=2.09 cm, R2=3.41 cm, see Figure 5.16).

• Pin cell 2 represents a fuel assembly (layer 2 and fuel zone 2 [71]) with an enrichment
of 6.3 w% and packing factor 29.9 %. The corresponding fuel assembly contains 33
fuel pins (R1=2.10 cm, R2=3.52 cm).

• Pin cell 3 represents a fuel block (layer 3 and zone 1 [71]) with a low enrichment of
4.3 w% and a high packing factor of 30.5 %. The corresponding fuel assemblies
contains 33 fuel pins (R1=2.10 cm, R2=3.52 cm).
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Figure 5.17: HTTR block model (33 pin fuel block) [71]

The group cross section of the fuel kernels in specific groups of the 69 WIMS group
structure [75] at a temperature of 1200 K is calculated (see table 5.7). The shown groups
are the epithermal groups of the lower resonance region from 4 eV to 367 eV. In addition,
the one-group cross sections are given. The data are divided into two sets of the total,
capture, elastic scattering and fission cross sections for the three considered cases. The
first set is based on standard MCNP calculations, the second on DBRC calculations for
238U. The relative difference of the cross sections is given as well. For some groups,
especially the groups 28, 30, 31 and 32, the group constants calculated with std. MCNP
and the DBRC version differ significantly. For these groups the total, capture and elastic
scattering group cross sections are increased by up to 5.8 % when the DBRC scattering
model is used instead of the standard MCNP model. The fission group cross section
shows only a very small sensitivity to the scattering model. The group cross section is
anyhow relatively small in the considered energy range. A difference of the one-group
cross sections can merely be noticed for the capture cross section which increases by up
to 0.86 %.
Overall, the impact of the scattering model is the largest for pin cell 3 which has the

highest TRISO packing factor. This is in accordance to the conclusions of the TRISO
packing fraction study of section 5.2.1.
This study shows that if the group constant generation for HTTR is based on pin cell

calculations with a constant cross section scattering model, the introduced error for the
group cross sections will be non negligible for resonance containing groups. The impact
is not solely on the scattering cross section but influences the capture group cross section
as well.

Impact of the DBRC Kernel on the Criticality of a Hexagonal Fuel Element

Three different HTTR fuel assemblies are considered which contain the previous studied
different fuel compacts as well as burnable poison (BP) rods (see figure 5.17). Hexagonal
block 1, 2 and 3 contain the fuel compacts of the pin cells 1, 2 and 3, respectively. The
impact of the scattering model on the reactivity of an infinitive array of these fuel blocks
at different fuel temperatures is investigated. The fuel temperature is set to 800 K, 1200
K or 1800 K, while the graphite, He-coolant and BP-temperature is always 1200 K.
Table 5.8 gives the multiplication factor k∞ for all considered cases and temperatures

as well as the relative difference of the multiplication factor dk/k (see equation 5.2). A
relatively large difference of the criticality can be noticed for the different enrichments,
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Table 5.8: Criticality of a hexagonal block unit cells for different fuel temperatures
hex. block 1 hex. block 2 hex. block 3

number of pins 31 33 33
TRISO p.f. 29.3 % 29.9 % 30.5 %

235U enrichment 9.9 w% 6.3 w% 4.3 w%

k∞ sdev.(1σ) k∞ sdev.(1σ) k∞ sdev.(1σ)
[10−5] [10−5] [10−5]

Fuel Temperature: 800 K

std. MCNP 1.3372 18 1.20369 17 1.09634 17
DBRC 1.33463 18 1.20073 17 1.09403 17

dk/k [10−5] -193 25 -247 24 -211 24

Fuel Temperature: 1200 K

std. MCNP 1.31637 35 1.18285 35 1.07619 35
DBRC 1.31164 35 1.17748 35 1.07163 35

dk/k [10−5] -361 49 -456 49 -426 49

Fuel Temperature: 1800 K

std. MCNP 1.29143 34 1.15682 34 1.05272 34
DBRC 1.28415 34 1.14876 34 1.04557 34

dk/k [10−5] -567 48 -702 48 -684 48

TRISO packing fractions and number of burnable poison rods comparing the different
cases. The reactivity shift caused by the resonance dependent scattering kernel increases
with temperature as already concluded in the previous studies. Hexagonal blocks 2
and 3 show a higher reactivity shift. Theses blocks have 33 fuel pins instead of 31
which decreases the overall graphite-to-fuel ratio and therefore increases the flux in the
resonance region. The reactivity shift of blocks 2 and 3 are the same with respect to the
standard deviations.
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Figure 5.18: Spectral zones of HTR-PM in ZIRKUS

5.3 HTR-PM Core Calculations
A full core model of the Chinese HTR-PM modular reactor is studied with regard to the
impact of the resonance scattering treatment. The following calculations are based on
a complete MCNP model of the equilibrium core provided by the ’Institut für Kernen-
ergetik und Energiesysteme’ (IKE) of the University of Stuttgart, Germany. The equi-
librium compositions were produced by the deterministic ZIRKUS code system [76]. The
model consists of 144 spectral fuel zones subdivided into eight radial pebble flow channels
(zones 1-144 of figure 5.18). For these fuel zones the equilibrium nuclei composition were
determined and converted into a MCNP input by IKE Stuttgart. All control and shut-
down systems are fully modeled as well as axial and radial reflectors. In order to simulate
the stochastic pebble packing fraction of 61 %, IKE uses equivalence pebbles. These peb-
bles have an increased radius of the pure graphite which surrounds the TRISO matrix
and are cut on six sides to a cubic unit cell. This unit cell has then the theoretical ratio
of coolant to pebble volume. TRISO particles are modeled as cubic centred arranged fuel
kernels. The four TRISO shells surrounding the fuel kernel are not modeled explicitly
but mixed with the matrix graphite. This methodology permits to keep the essential
parameters of the double heterogenity and moderator to fuel and coolant volume while
reducing the storage demands and calculation time of the full scale HTR model.
The IKE model is very detailed in the temperature distribution. For every spectral

zone fuel, matrix and pebble shell temperatures are given in addition to temperatures of
the reflector and shut down system zones. The fuel temperatures range from 550 K to up
to 1150 K. A stochastic interpolation scheme is used in order to approximate the correct
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Doppler broadened cross sections at the specific temperatures from a finite temperature
grid. The created JEFF3.1 MCNP library contains cross sections for the temperatures
300 K, 400 K, 500 K, 600 K, 700 K, 800 K, 900 K, 1000 K, 1100 K, 1200 K, 1600 K,
1700 K, 1800 K and 2000 K as well as S(α, β) tables for graphite at 293 K, 400 K, 500
K, 600 K, 700 K, 800 K, 1000 K, 1200 K, 1600 K and 2000 K. Every nucleus at a specific
temperature is then represented by a mixture of two nuclei of the same kind at different
node temperatures T1 and T2. The real atomic density of the nucleus is multiplied by the
weighting factor w1 and w2. A root interpolation is used as suggested among others by
Brown [77]:

Σ(T ) ≈ w1 · Σ1 + w2 · Σ2 (5.5)
where:

w2 =
√
T −
√
T1√

T2 −
√
T1

w1 = 1−W2 (5.6)

For comparison reasons a linear interpolation scheme is tested as well. The impact of
the interpolation scheme on the keff value is found to be low for the HTR-PM equilibrium
core and the used library.

5.3.1 Impact of the DBRC Kernel on the HTR-PM Criticality
Several MCNP calculations are performed using different scattering models. Each calcu-
lation simulates about 3,000 cycles with 10,000 neutron histories each in order to achieve
a standard deviation (sdev.(1σ)) of the criticality of less than 20 10−5. Table 5.9 sum-
marizes the results of the different cases. The first case (std. MCNP) employs the
Wigner-Wilkins approximation for neutrons with an energy of to Eup scat.=400*kBT. Up
to this energy an energy transfer from a nucleus to the neutron is possible. At higher
energies the asymptotic 0 K scattering kernel is used. This option is defined as the ref-
erence case. The range of the Wigner-Wilkins approximation is extended to 210 eV, 500
eV and 1000 eV for cases 2 to 4 (WW210, WW500, WW1000). Case 5 (0 K approx.) uses
the Wigner-Wilkins approximation for the thermal range and starts at 4 eV to employ
the 0 K approximation. This procedure is commonly used by deterministic codes. Cases
6, 7 and 8 (DBRC210, DBRC500, DBRC1000) employ the resonance dependent scattering

Table 5.9: Criticality of the HTR-PM reactor with different scattering models
Scat. model Eup scat. keff sdev.(1σ) kx-kstd.MCNP sdev.(1σ)

[10−5] [10−5] [10−5]

1 std. MCNP 400*kBT 1.00281 9 – –

2 WW210 210 eV 1.00245 13 -36 16
3 WW500 500 eV 1.00232 13 -49 16
4 WW1000 1000 eV 1.00260 14 -21 17

5 0 K approx. 4 eV 1.00176 17 -105 19

6 DBRC210 210 eV 1.00084 9 -197 13
7 DBRC500 500 eV 1.00106 16 -175 18
8 DBRC1000 1000 eV 1.00074 13 -207 16

9 DBRC210 (238U + 240Pu) 210 eV 1.00088 14 -193 17
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kernel for 238U and the Wigner-Wilkins approximation for other nuclei up to an energy
of 210 eV, 500 eV and 1000 eV. The DBRC210 MCNP version has been used as stan-
dard DBRC version in the previous studies. Case 9 (DBRC210 (238U + 240Pu)) uses the
DBRC210 model for both, 238U and 240Pu.
Extending the range of the Wigner-Wilkins approximation has a small impact on keff .

A decrease of up to 0.050 % (ca. 3 σ) can be noticed. The use of the DBRC scattering
kernel for 238U however, decreases the criticality by about -0.20 %. Again, extending the
up scattering range from 210 eV to 1000 eV shows little impact. The main contribution
of the reactivity shift lies within the first 8 main S resonances of 238U. Even though 240Pu
cross section has a pronounced resonance profile and in particular a strong resonance at
the low energy of 1.056 eV the impact of a resonance dependent scattering model is low.
This is due to the relative low concentration of 240Pu compared to 238U.
Case 5 shows a clear reactivity decrease as well. In this case the 0 K approximation

is used in the entire resonance region. Using the asymptotic kernel instead of Wigner-
Wilkins kernel leads to an increased down-scattering of neutrons from the higher energy
side of 238U resonances towards the resonance energies. Consequently the neutron ab-
sorption increases.

5.3.2 Impact of the DBRC Kernel on the HTR-PM Doppler
Reactivity Coefficient

The impact of the resonance dependent scattering kernel on the calculation of the Doppler
reactivity coefficient of the HTR-PM is studied. For this the fuel temperatures in the dif-
ferent spectral fuel zones are uniformly changed by a fixed temperature difference ∆T e.g.
all fuel temperatures are increased by 100 K. Criticality calculations are performed with
the standard and DBRC (for 238U) versions of MCNP and the reactivity ρ is calculated
(equation 5.4). Figure 5.19 shows the reactivities for fuel temperature changes of -300 K
to 500 K for both scattering models. At ∆T = 0 the calculated reference reactivity is
slightly positive due to a criticality value keff larger than one. Third order polynomials
are fitted by regression to the reactivity values:

ρstd.MCNP (∆T ) [10−5] = −8.578 · 10−7∆T 3 + 1.7304 · 10−3∆T 2 − 4.751∆T + 266.3
ρDBRC (∆T ) [10−5] = −9.719 · 10−7∆T 3 + 1.7934 · 10−3∆T 2 − 5.023∆T + 89.0

where ∆T is given in Kelvin. There is clear reactivity difference over the entire con-
sidered temperature range which increases for higher temperatures. The derivations of
the equations ρstd.MCNP (∆T ) and ρDBRC (∆T ) gives the reactivity coefficients for both
cases. They are plotted in figure 5.20. The Doppler reactivity coefficient based on the
DBRC calculation is always found to be more negative than the one based on the stan-
dard MCNP calculation. At the equilibrium temperature distribution (∆T=0 K) the
difference between the different calculations is at least 6 % and up to 8 % for higher
temperature differences ∆T .
A more negative Doppler reactivity coefficient increases the inherent shutdown feedback

due to a fuel temperature rise and therefore the safety of the reactor. However, the
increase Doppler feedback has to be overcome during normal shut down of the reactor
core. The calculated reactivity gain due to the temperature decrease is higher when the
resonance dependent scattering kernel is considered. Therefore, stronger shut down rods
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Figure 5.19: Reactivity of the HTR-PM equilibrium core at different fuel temperatures calcu-
lated with DBRC and std. MCNP

Figure 5.20: Doppler reactivity coefficient of the HTR-PM equilibrium core at different fuel
temperatures calculated with DBRC and std. MCNP
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Figure 5.21: 239Pu concentration during burn up of HTR-PM unit cell for different fuel tem-
peratures calculated with the DBRC and with the standard. MCNP versions

are required or the final shut down temperature has to be increased.

5.3.3 Estimation of the Criticality Shift due to Higher 239Pu Content
As mentioned in the previous unit cell studies (see section 5.2.2), the increased neutron
absorption of 238U leads to a higher 239Pu production during burn up. The studied HTR-
PM equilibrium core however is based on deterministic ZIRKUS calculations. Therefore
the equilibrium compositions used previously does not include the effect of a resonance
dependent scattering kernel for 238U. This means that the 239Pu equilibrium concentration
is not exact. In this subsection, an estimate of the additional 239Pu concentration is
determined based on a unit cell burn up study.
The considered unit cell consists of BCC arranged pebbles. One half of the pebbles

have an equilibrium composition while the other half are fresh pebbles. The equilibrium
pebbles are mixed to the fresh pebbles to create an approximate HTR-PM equilibrium
neutron spectrum. During burn up only the fresh pebbles changed their fuel composition
while the equilibrium pebbles keep their initial composition.
The highest neutron flux in the core appears in the spectral zones 8 and 9 (see figure

5.18). Therefore, the equilibrium composition is chosen to be the same as in zone 9.
Two different cases are considered. In the first case, the fuel, matrix and pebble shell
temperatures are taken as of zone 9. The fuel temperature is 850 K. A special cross section
set at this temperature is created in order to avoid interpolation by means of material
mixing which would lead to an effective temperature change during burn up. In a second
case, the fuel temperature is 1200 K. This case is deemed to give the maximum realistic
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Figure 5.22: Increase of the 239Pu concentration calculated with DBRC relative to standard
MCNP calculation for an HTR-PM unit cell and different fuel temperatures

impact of the resonance dependent scattering kernel on HTR-PM 239Pu concentration.
Figure 5.22 shows the 239Pu concentration in the initially fresh TRISO kernels dur-

ing burn up based on standard MCNP and DBRC calculations as well as the relative
difference. Both studied cases are shown. The relative difference on the 239Pu concen-
tration between the std. MCNP and DBRC based calculations is significantly higher for
the higher fuel temperature case. The difference at mid burn up of 45 MWD/t HM is
about 1.5 % and 0.75 % for the 1200 K and 850 K, respectively. In order to investigate
the impact of the DBRC kernel on the mean 239Pu content the 239Pu concentration is
intergarted over the entire 90 MWd/tHM burn up. A differene of 0.66 % and 1.45 % is
found for the first and second case, respectively.
The 239Pu concentration in every spectral zone of the HTR-PM core model is increased

by 0.66 % and 1.45 % in order to investigate whether the additional 239Pu compensates
the reactivity loss due to the resonance denpendent scattering model compared to the
standard MCNP model. Table 5.10 gives the criticality keff of the core for the different
cases. The additional 239Pu content in the pebbles increses keff to some extent. However,

Table 5.10: Criticality of the HTR-PM core with additional 239Pu
Case keff sdev.(1σ)[10−5] kDBRC-kstd.MCNP [10−5] sdev.(1σ)[10−5]

std. MCNP 1.00281 9 – –
DBRC 1.00084 9 -197 13

DBRC + 0.66 % 239Pu 1.00139 14 -142 17
DBRC + 1.45 % 239Pu 1.00188 13 -93 16
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even with 1.45 % more 239Pu, there is still a reactivity decrease between the standard
MCNP calculation to the DBRC calculation with the additional 239Pu.

5.4 Summary
The presented study of this chapter shows that the resonance dependent scattering kernel
should be included in reactor physics calculation for HTR pebble bed reactors and in
particular for block type HTRs. The error introduced by using an approximated model
of the 238U scattering kernel, like the asymptotic kernel or the Wigner-Wilkins kernel, can
be significant for criticality and Doppler reactivity calculations. With these approximated
kernels the breeding of 239Pu by neutron capture of 238U is systematically underestimated.
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Conclusion and Outlook

Conclusion
The presented work concentrates on the mutual effect of nuclear cross section resonances
and temperature influence, i.e. Doppler broadening, on the double differential part of the
scattering cross section, namely the scattering kernel and on its subsequent influence on
high temperature reactors. These two underlying phenomena of resonances and temper-
ature dependence of cross section were discussed and common analytical formula were
given.
The new codeDOPPLER-MC was developed and is presented in this work. DOPPLER-

MC performs stochastically Doppler broadening of cross sections as well as scattering
kernels. In particular DOPPLER-MC takes the resonance shape of cross sections into
account when the scattering kernel is concerned. The cross section Doppler broaden-
ing method of DOPPLER-MC is compared to the state-of-the-art Doppler broadening
method of the NJOY code. Both codes produce exactly the same temperature dependent
cross sections. The resonance dependent kernel broadening method of DOPPLER-MC is
compared to the analytic equations given by Rothenstein and Dagan [2]. The stochastic
broadened kernel agrees very well with analytic broadened kernel in terms of the energy
transfer as well as of the angular distributionof scattered neutrons.
As a direct consequence of the stochastic DOPPLER-MC code, a stochastic, reso-

nance dependent scattering kernel broadening module (DBRC) is implemented into the
MC transport code MCNP as suggested by Rothenstein [3]. The DBRC method removes
the current blatant inconsistency within MCNP, using Doppler broadened resonance cross
sections but neglecting the resonances as far as the scattering kernel is concerned. This
method represents an alternative to the use of S(α, β) tables by introducing the resonance
scattering model into the MC code. Significant differences between the current MCNP
model and the improved DBRC model are pointed out by comparing energy transfers,
up- and down-scattering probabilities, energy moments, mean energy change, angular
moments and the mean cosine of the scattering angle.

The new DBRC model is validated by two experiments: the nTOF capture experiment
and in particular the RPI scattering experiment. In addition, DBRC based calculations
are compared to S(α, β) based MCNP calculations. The S(α, β) tables are produced by
using the analytic formula for the resonance dependent kernel. Criticality and reaction
rates of the DBRC and S(α, β) calculation agree within the statistical uncertainty. It
is concluded that a sufficient high degree of validation of the DBRC scattering model is
reached.

The impact of the resonance dependent scattering kernel on HTRs is studied in detail.
The DBRC corrected version of MCNP is employed. The HTR models used in this
study are mainly based on the HTR-10, the HTTR and the HTR-PM. It is found that in
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cell-calculations the importance of the scattering model in the resonance region of 238U
increases with increasing the TRISO packing factor (TPF) and a temperature increasing.
Neutron flux deviations in the very vicinity of the resonance energy can be observed when
the DBRC model is considered causing a negative reactivity shift. The shift is mainly
caused by an increased neutron absorption of the 20.87 eV and 36.7 eV 238U resonances.
A similar dependency on the heavy metal loading, i.e. on the TPF, and on the tem-

perature is observed for pebble unit cell calculations. In addition, the Doppler reactivity
coefficient is found to be more negative when the DBRC model is considered, especially
for higher heavy metal content pebbles. Pebble burn up studies show that the increased
neutron absorption of 238U leads to a higher 239Pu concentration at high burn up rates.
The impact of the 232Th scattering kernel model is investigated, but found to be low.
For the compact design, similar results are obtained as for the pebble design. However,

due to the high TPF of the compact, the influence of the resonance dependent scattering
kernel increases. For example, if an HTTR compact-pin-cell-model is used for group
cross section generation, the total and the absorption group cross section are subject to
an error of up to 5.8 %.
Finally, a full scale model of the HTR-PM core is analyzed in view of the impact of

the resonance scattering kernel. When the DBRC model is used instead of the standard
MCNP scattering model the reactivity decreases by about -0.20 %. The 239Pu content
of the equilibrium core increases by up to 1.45 %. However, the additional amount of
239Pu does not compensate the loss of reactivity. In addition, the DBRC kernel renders
the Doppler coefficient being more negative by about 6 to 8 %.

Outlook
The resonance dependent scattering kernel model should not only be included in MC
codes but also in deterministic codes like is was already accomplished in case of the well
known commercial code CASMO [34].
In the very first step, namely the interpretation of time-of-flight experiments for cross

section generation, data analyse codes (e.g SAMMY [53], REFIT [78], CONRAD [79]) are
used. They perform the cross section fitting based on various formalisms to the exper-
imental measurements. However, the multiscattering models used by these codes, are
based on the zero Kelvin approximation. It is evident that the basic cross section eval-
uation should also be based on the present resonance dependent model. In particular,
Aerts [51] showed that in the case of a 232Th saturated resonances the code SAMMY fails
to match the resonance shape which is attributed to the approximative multiscattering
model.

A first step towards this achievement could be to integrate a DBRC like correction into
a Monte Carlo code performing the multiple scattering correction for the data analysis
code. The second step should consequently be to deduce an analytical correction of the
current multiscattering treatment, based on the new DBRC version of MCNP presented
in this work.
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Nomenclature

Symbol Unit
A mass number
Ak energy moment
E eV neutron energy
E ′ eV secondary neutron energy
E0 eV resonance energy
EB eV binding energy
ET eV target energy
E∗ eV excitation energy
< E − E ′ >av eV mean energy loss
f(~Ω) n/cm−2/s neutron vector flux in direction ~Ω
gc spin factor
I target spin quantum number
J the total spin quantum number
kB eV/K Boltzmann constant (8.617343 10−5eV/K)
k∞ infinite multiplication factor
keff effective multiplication factor
l wave moment
m kg neutron mass
MT (V ) Maxwell Boltzmann distribution
Pn Legendre polynomial
P (C, µT ) SVT probability density function
p(V ) velocity distribution of the target nuclei
R cm radius of the target nucleus
s channel spin quantum number
T K temperature
TF K fuel temperature
u m/s neutron velocity in the COM frame
u′ m/s secondary neutron velocity in the COM frame
U m/s target velocity in the COM frame
U ′ m/s secondary target velocity in the COM frame
Ucc collision matrix (S matrix)
v m/s neutron speed in the LAB frame
vr m/s relative neutron speed in the TR frame

αDTF K−1 Doppler reactivity coefficient
Γx eV partial resonance width
λc nm de Broglie wave length of the neutron
µ0 cosine of the scattering angle in the laboratory frame
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µC cosine of the scattering angle in the center-of-mass frame
µTR0 cosine of the scattering angle in the target-at-rest frame
µt cosine of the angle between incident neutron and target

in the laboratory frame
µ̄lab0 mean cosine of the scattering angle
ϑ deg polar scattering angle
ρ reactivity
σx b cross section of reaction type x
σsn b Legendre moment of scattering cross section
σs (E → E ′) b/eV energy transfer scattering kernel from energy E to E ′
σs
(
E → E ′, ~Ω→ ~Ω′

)
b/eV double differential scattering kernel from energy E to E ′

and from direction ~Ω to ~Ω′
Σx cm−1 macroscopic cross section of reaction type x
ϕ deg azimuthal scattering angle
Φ n/cm2/s neutron flux
ξ dimensionless neutron speed
ψ + iχ complex resonance shape function
~Ω angular direction
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