Sicherheitstechnische Untersuchung für einen Druckwasserreaktor mit dem gekoppelten Programmsystem TRACE/PARCS

Diplomarbeit

zum Erwerb des akademischen Grades "Diplom Ingenieur (FH)" im Studiengang Energie- und Umwelttechnik

der

Hochschule Zittau/Görlitz (FH) –

University of Applied Sciences

Wadim Jäger

Betreuer:	DrIng. V. H. Sánchez Espinoza Forschungszentrum Karlsruhe GmbH Institut für Reaktorsicherheit
Gutachter:	Prof. DrIng. W. Lischke Hochschule Zittau/Görlitz (FH)

Zittau, Oktober 2006

Danksagung

An dieser Stelle möchte ich mich ganz herzlich bei folgenden Personen bedanken:

- Dr.-Ing. V. H. Sánchez Espinoza für die Betreuung der Diplomarbeit. Seine Ideen und Anregungen waren maßgebend für das Gelingen dieser Arbeit. Auch die angeregten Diskussionen neben der Arbeit waren sehr hilf- und aufschlussreich.
- Dr.-Ing. C. H. M. Broeders, Leiter der Abteilung Neutronenphysik und Reaktordynamik.
- Prof. Dr.-Ing. V. Heinzel, Leiter des Instituts für Reaktorsicherheit.
- Frau I. Schwarz, Frau D. Stephany und Frau M. Zimmermann, den Sekretärinnen am Institut f
 ür Reaktorsicherheit, f
 ür ihre Hilfsbereitschaft.
- Allen Mitarbeitern des Instituts für Reaktorsicherheit für ihre Unterstützung.
- Prof. Dr.-Ing. W. Lischke als Hauptgutachter der Diplomarbeit.
- Frau Dr.-Ing. A. Traichel für ihre Anmerkungen und Empfehlungen.

Gesondert möchte ich mich bei Professor Heinzel, Dr. Broeders und Dr. Sánchez Espinoza dafür bedanken, dass sie es mir ermöglichten an der diesjährigen Frédéric Joliot & Otto Hahn Summer School on Nuclear Reactors teilzunehmen.

Kurzfassung

Die vorliegende Arbeit ist in das laufende Forschungsvorhaben der Multi-Physik Aufgaben zur Simulation von Kernenergiesystemen am Forschungszentrum Karlsruhe GmbH (FZK) integriert. Erstellt wurde diese Arbeit in der Abteilung Neutronenphysik und Reaktordynamik (NR) des Instituts für Reaktorsicherheit (IRS).

Ziel dieser Arbeit war eine sicherheitstechnische Untersuchung für einen Druckwasserreaktor mit dem gekoppelten Programmsystem TRACE/PARCS. Im Rahmen des internationalen Code Application and Maintenance Program (CAMP) beteiligt sich das IRS an der Qualifizierung und Validierung von "Best Estimate" Sicherheitsanalysetools, wie dem gekoppelten Programmsystem TRACE/PARCS. Der russische Reaktor vom Typ WWER-1000 erwies sich als prädestiniert für die Untersuchung mit TRACE/PARCS. Für diesen Reaktor wurde ein internationaler Benchmark, der OECD/NEA VVER-1000 Coolant Transient Benchmark Phase 2 (V1000-CT2), definiert, der sich ausführlich mit 3D-Effekten im Bereich Thermohydraulik und Neutronenphysik befasst.

Untersucht wurde dabei wie sich TRACE zur Simulation von 3D-Effekten (Kühlmittelvermischung) eignet. Am Beispiel einer postulierten Unterkühlungstransiente wurde die Kopplung des 3D-Thermohydraulik Code TRACE mir dem 3D-Neutronenkinetik Code PARCS untersucht. Anhand dieser Arbeit konnte gezeigt werden, dass sich diese beiden Programmsysteme durch geeignete Nodalisierung des Reaktordruckbehälters und des Kerns für eine Beschreibung von mehrdimensionalen Strömungseffekten und Rückwirkungsmechanismen eignen.

Inhaltsverzeichnis

D	anksa	gun	g	I
κ	urzfa	ssun	g	II
Ir	nhalts	verze	eichnis	III
A	bbild	ungs	verzeichnis	VI
т	abelle	nver	zeichnis	X
v	erzeio	hnis	der Abkürzungen und Akronyme	XII
F	ormel	verze	eichnis	XIV
1	Eir	leitu	ing	1
	1.1	Mot	tivation	1
	1.2	Arb	eitsgrundlagen	4
	1.3	Ziel	der Arbeit	6
	1.4	The	eoretische Betrachtungen	7
	1.4	.1	Kühlmittelvermischung	7
	1.4	.2	Unterkühlungstransiente	8
2	De	r Rea	aktor vom Typ WWER-1000	9
	2.1		närkreislauf	-
		Prir		9
	2.2	Prir Rea	aktordruckbehälter	
	2.2 2.2	Prir Rea .1	aktordruckbehälter Unteres Plenum	9
	2.2 2.2 2.2	Prir Rea .1 .2	aktordruckbehälter Unteres Plenum Die aktive Zone	
	2.2 2.2 2.2 2.2	Prir Rea .1 .2 .3	Aktordruckbehälter Unteres Plenum Die aktive Zone Oberes Plenum	
	2.2 2.2 2.2 2.2 2.2	Prir Rea .1 .2 .3 .4	aktordruckbehälter Unteres Plenum Die aktive Zone Oberes Plenum Anbindung an den Primärkreislauf	
3	2.2 2.2 2.2 2.2 2.2 Da	Prir Rea .1 .2 .3 .4	Aktordruckbehälter Unteres Plenum Die aktive Zone Oberes Plenum Anbindung an den Primärkreislauf	
3	2.2 2.2 2.2 2.2 2.2 Da 3.1	Prir Rea .1 .2 .3 .4 s Prc Auf	Aktordruckbehälter Unteres Plenum Die aktive Zone Oberes Plenum Anbindung an den Primärkreislauf ogrammsystem TRACE bau und Struktur	
3	2.2 2.2 2.2 2.2 2.2 Da 3.1 3.2	Prir Rea .1 .2 .3 .4 s Prc Auf	Aktordruckbehälter Unteres Plenum Die aktive Zone Oberes Plenum Anbindung an den Primärkreislauf ogrammsystem TRACE bau und Struktur	
3	2.2 2.2 2.2 2.2 2.2 Da 3.1 3.2 3.3	Prir Rea .1 .2 .3 .4 s Pro Auf Anv TR/	Aktordruckbehälter Unteres Plenum Die aktive Zone Oberes Plenum Anbindung an den Primärkreislauf ogrammsystem TRACE bau und Struktur vendungsbereiche	
3	2.2 2.2 2.2 2.2 2.2 Da 3.1 3.2 3.3 3.4	Prir Rea .1 .2 .3 .4 s Prc Auf Anv TR/	Aktordruckbehälter Unteres Plenum Die aktive Zone Oberes Plenum Anbindung an den Primärkreislauf ogrammsystem TRACE bau und Struktur vendungsbereiche ACE Komponenten	
3	2.2 2.2 2.2 2.2 2.2 Da 3.1 3.2 3.3 3.4 3.4 3.4	Prir Rea .1 .2 .3 .4 s Prc Auf Anv TR/ The .1	Aktordruckbehälter Unteres Plenum Die aktive Zone Oberes Plenum Anbindung an den Primärkreislauf ogrammsystem TRACE bau und Struktur vendungsbereiche ACE Komponenten ermohydraulische Modellierung Erhaltungsgleichungen	

4	Da	as F	Programmsystem PARCS	38
	4.1	A	Aufbau und Struktur	38
	4.2	A	Anwendungsbereiche	38
	4.3	G	Grundmodelle	39
	4.4	N	Methodik zur Kopplung von PARCS mit TRACE	40
5	Er	ntw	ricklung eines 3D-Kernmodells für den Reaktordruckbehälter	43
	5.1	Т	Thermohydraulische Modellierung des RDB	43
	5.	1.1	Axiale Nodalisierung	46
	5.	1.2	Azimutale Nodalisierung	48
	5.	1.3	Radiale Nodalisierung	52
	5.	1.4	Anteil des flüssigen Volumens	56
	5.	1.5	Anteil des flüssigen Strömungsquerschnittes in yt-Richtung	60
	5.	1.6	Anteil des flüssigen Strömungsquerschnittes in z-Richtung	63
	5.	1.7	Anteil des flüssigen Strömungsquerschnittes in xr-Richtung	65
	5.	1.8	Hydraulischer Durchmesser in yt-Richtung	67
	5.	1.9	Hydraulischer Durchmesser in z-Richtung	69
	5.	1.10	0 Hydraulischer Durchmesser in xr-Richtung	71
	5.	1.1′	1 Definition der Wärmequellen	75
	5.	1.12	2 Vereinfachte Darstellungen in der Modellierung des RDB	77
	5.2	Ν	Neutronenkinetische Modellierung	80
	5.3	Ν	Nodellierung des Primärkreislaufes	84
	5.4	A	Anwendung des 3D-Modells	85
6	Q	uali	ifizierung des entwickelten 3D-RDB Modells	87
	6.1	В	Beschreibung des Experimentes zur Kühlmittelvermischung	87
	6.2	A	Anfangs- und Randbedingungen für die Simulation	87
	6.3	D	Darstellung ausgewählter TRACE Ergebnisse	89
	6.4	C	Diskussion der ermittelten Ergebnisse	96
7	Aı	nwe	endung des qualifizierten 3D-RDB-Modells	101
	7.1	V	/orbetrachtungen	101
	7.2	Ν	Nullleistungszustände	102
	7.	2.1	Ergebnisse für Szenario 1	104

	7.2.2	Ergebnisse für Szenario 2105
	7.2.3	Ergebnisse für Szenario 3 106
	7.2.4	Ergebnisse für Szenario 4 107
	7.2.5	Ergebnisse für Szenario 5 108
	7.2.6	Ergebnisse für Szenario 6 109
	7.2.7	Ergebnisse für Szenario 7 110
	7.2.8	Diskussion der Ergebnisse 111
7.	.3 Sim	ulation der postulierten Transiente115
	7.3.1	Ablauf und Randbedingungen 115
	7.3.2	Stationäres Kernverhalten bei Volllast118
	7.3.3	Zeitabhängiges Verhalten des RDB 120
	7.3.4	Diskussion der Ergebnisse 127
8	Schluss	sfolgerung und Ausblick131
Lite	raturver	zeichnis
Eid	esstattlic	che Erklärung 137
Α	Randbe	dingungen für die Kühlmittelvermischung 138
в	Randbe	dingungen für die Unterkühlungstransiente 147

Abbildungsverzeichnis

Abbildung 1-1: Entwicklungsschritte von TRACE [Cur90]2
Abbildung 2-1: Primärseitige Darstellung eines WWER-1000 [Par01]
Abbildung 2-2: Draufsicht auf einen WWER-1000 [Iva04]10
Abbildung 2-3: Seitenansicht eines Dampferzeugers vom Typ PGV-1000M [Iva04]
Abbildung 2-4: Frontalschnitt durch einen Dampferzeuger eines WWER-1000 [Iva04]
Abbildung 2-5: Hauptkühlmittelpumpe vom Typ GCN-195M [Iva04]
Abbildung 2-6: Schnitt durch den Druckhalter [Iva04]14
Abbildung 2-7: RDB eines WWER-1000 mit den wichtigsten Elementen [Iva04] 16
Abbildung 2-8: Unteres Plenum des WWER-1000 [Koe04]17
Abbildung 2-9: Brennelement eines WWER-1000 Reaktors [Iva04] 19
Abbildung 2-10: Schnitt durch einen Brennstab eines WWER-1000 [Iva04]20
Abbildung 2-11: Oberes Plenum
Abbildung 2-12: Anordnung der Loops
Abbildung 3-1: Modularer Aufbau von TRACE [Bro95]]24
Abbildung 3-2: Abläufe während einer TRACE Berechnung [Oda04]
Abbildung 3-3: Zyklus einer TRACE Simulation [Oda04]
Abbildung 3-4: Strömungsformen in einen vertikalen Strömungskanal [Cur90; Ish75;
Spo00,] [,]
Abbildung 3-5: Schematische Darstellung der Wärmeübergangsbereiche [Bro95;
San03; Tom89;]
Abbildung 3-6: Strömungsregime in Abhängigkeit von der Durchflussmenge und vom
Void-Anteil [Spo00; Cur90]35
Abbildung 3-7: Konstitutive Gleichungen für die Massenerhaltung [Spo00]
Abbildung 3-8: Konstitutive Gleichungen für den Impulserhalt [Spo00]
Abbildung 3-9: Konstitutive Gleichungen zur Energieerhaltung [Spo00]
Abbildung 4-1: Geometrie und Randbedingungen für die TPEN-Methode [Dow04]. 40
Abbildung 4-2: Datenaustausch für die verschiedenen Möglichkeiten einer Kopplung
[lva06b]42
Abbildung 5-1: Beispiel für die Nodalisierung eines RDB's [Oda04]
Abbildung 5-2: Schnittbild des WWER 1000 RDB's

Abbildung 5-3: 3D Zelle 4	5
Abbildung 5-4: Axiale Unterteilung des RDB's 4	7
Abbildung 5-5: Unterteilung in 4; 8 und 16 Sektoren4	9
Abbildung 5-6: Unterteilung in 6; 12 und 18 Sektoren	0
Abbildung 5-7: Azimutale Unterteilung	1
Abbildung 5-8: Schnitt durch den Reaktor (rechts: Höhe Kühlmittel-Eintritt - links:	
Höhe Kühlmittel-Austritt) [Koe04]52	2
Abbildung 5-9: Hexagonale Kernstruktur [Koe04]	3
Abbildung 5-10: Symmetrisches Hexagon mit einer Schlüsselweite von 236 mm 54	4
Abbildung 5-11: Radiale Unterteilung und Abmessungen des Kernes	5
Abbildung 5-12: Radiale Unterteilung des axialen Levels 7	6
Abbildung 5-13: 3D Darstellung eines axialen Sektors	7
Abbildung 5-14: Sicht auf die Grenzflächen zwischen den Sektoren und den Ringen	
[San06]6 [.]	1
Abbildung 5-15: Axiale Sicht auf den innersten Teil eines Sektors	3
Abbildung 5-16: Ermittlung des benetzten Umfangs	8
Abbildung 5-17: Benetzter Umfang in z-Richtung 69	9
, solidarig e 17. Denetzter erhang in 2 Hernang	
Abbildung 5-18: Radiale Unterteilung des Pellets	6
Abbildung 5-18: Radiale Unterteilung des Pellets	6 7
Abbildung 5-18: Radiale Unterteilung des Pellets	6 7 8
Abbildung 5-18: Radiale Unterteilung des Pellets 70 Abbildung 5-19: Vereinfachte Darstellung des Bodenbereiches 71 Abbildung 5-20: Position der Druckdifferenz Messpunkte im RDB 72 Abbildung 5-21: Schematische Darstellung der Konsole 73	6 7 8 9
Abbildung 5-18: Radiale Unterteilung des Pellets 70 Abbildung 5-19: Vereinfachte Darstellung des Bodenbereiches 71 Abbildung 5-20: Position der Druckdifferenz Messpunkte im RDB 72 Abbildung 5-21: Schematische Darstellung der Konsole 73 Abbildung 5-22: Modellierung des oberen RDB Bereichs 80	6 7 8 9 0
Abbildung 5-18: Radiale Unterteilung des Pellets 70 Abbildung 5-19: Vereinfachte Darstellung des Bodenbereiches 71 Abbildung 5-20: Position der Druckdifferenz Messpunkte im RDB 72 Abbildung 5-21: Schematische Darstellung der Konsole 73 Abbildung 5-22: Modellierung des oberen RDB Bereichs 80 Abbildung 5-23: Nodalisierung der aktiven Zone 81	6 7 8 9 0
Abbildung 5-18: Radiale Unterteilung des Pellets 70 Abbildung 5-19: Vereinfachte Darstellung des Bodenbereiches 71 Abbildung 5-20: Position der Druckdifferenz Messpunkte im RDB 72 Abbildung 5-21: Schematische Darstellung der Konsole 73 Abbildung 5-22: Modellierung des oberen RDB Bereichs 80 Abbildung 5-23: Nodalisierung der aktiven Zone 81 Abbildung 5-24: Radiale Anordnung der 28(+1) Brennelement Typen 82	6 7 8 9 0 1 2
Abbildung 5-18: Radiale Unterteilung des Pellets 76 Abbildung 5-19: Vereinfachte Darstellung des Bodenbereiches 77 Abbildung 5-20: Position der Druckdifferenz Messpunkte im RDB 78 Abbildung 5-21: Schematische Darstellung der Konsole 79 Abbildung 5-22: Modellierung des oberen RDB Bereichs 86 Abbildung 5-23: Nodalisierung der aktiven Zone 87 Abbildung 5-24: Radiale Anordnung der 28(+1) Brennelement Typen 82 Abbildung 5-25: Axiale Unterteilung der 29 Brennelementtypen 83	6 7 8 9 0 1 2 3
Abbildung 5-18: Radiale Unterteilung des Pellets 76 Abbildung 5-19: Vereinfachte Darstellung des Bodenbereiches 77 Abbildung 5-20: Position der Druckdifferenz Messpunkte im RDB 78 Abbildung 5-21: Schematische Darstellung der Konsole 79 Abbildung 5-22: Modellierung des oberen RDB Bereichs 86 Abbildung 5-23: Nodalisierung der aktiven Zone 87 Abbildung 5-24: Radiale Anordnung der 28(+1) Brennelement Typen 82 Abbildung 5-25: Axiale Unterteilung der 29 Brennelementtypen 83 Abbildung 5-26: Grafische Darstellung des TRACE Modells 84	6 7 8 9 0 1 2 3 5
Abbildung 5-18: Radiale Unterteilung des Pellets 70 Abbildung 5-19: Vereinfachte Darstellung des Bodenbereiches 71 Abbildung 5-20: Position der Druckdifferenz Messpunkte im RDB 72 Abbildung 5-21: Schematische Darstellung der Konsole 73 Abbildung 5-22: Modellierung des oberen RDB Bereichs 80 Abbildung 5-23: Nodalisierung der aktiven Zone 83 Abbildung 5-24: Radiale Anordnung der 28(+1) Brennelement Typen 83 Abbildung 5-25: Axiale Unterteilung der 29 Brennelementtypen 83 Abbildung 5-26: Grafische Darstellung des TRACE Modells 84 Abbildung 6-1: Kühlmitteltemperaturen am Eintritt #1 94	6 7 8 9 0 1 2 3 5 0
Abbildung 5-18: Radiale Unterteilung des Pellets 70 Abbildung 5-19: Vereinfachte Darstellung des Bodenbereiches 71 Abbildung 5-20: Position der Druckdifferenz Messpunkte im RDB 74 Abbildung 5-21: Schematische Darstellung der Konsole 75 Abbildung 5-22: Modellierung des oberen RDB Bereichs 80 Abbildung 5-23: Nodalisierung der aktiven Zone 81 Abbildung 5-24: Radiale Anordnung der 28(+1) Brennelement Typen 82 Abbildung 5-25: Axiale Unterteilung des TRACE Modells 83 Abbildung 6-1: Kühlmitteltemperaturen am Eintritt #1 90 Abbildung 6-2: Kühlmitteltemperaturen am Eintritt #2 91	6 7 8 9 0 1 2 3 5 0
Abbildung 5-18: Radiale Unterteilung des Pellets 70 Abbildung 5-19: Vereinfachte Darstellung des Bodenbereiches 71 Abbildung 5-20: Position der Druckdifferenz Messpunkte im RDB 74 Abbildung 5-21: Schematische Darstellung der Konsole 74 Abbildung 5-22: Modellierung des oberen RDB Bereichs 80 Abbildung 5-23: Nodalisierung der aktiven Zone 81 Abbildung 5-24: Radiale Anordnung der 28(+1) Brennelement Typen 82 Abbildung 5-25: Axiale Unterteilung des TRACE Modells 83 Abbildung 6-1: Kühlmitteltemperaturen am Eintritt #1 90 Abbildung 6-2: Kühlmitteltemperaturen am Eintritt #3 91	6 7 8 9 0 1 2 3 5 0 1 1
Abbildung 5-18: Radiale Unterteilung des Pellets 70 Abbildung 5-19: Vereinfachte Darstellung des Bodenbereiches 71 Abbildung 5-20: Position der Druckdifferenz Messpunkte im RDB 72 Abbildung 5-21: Schematische Darstellung der Konsole 73 Abbildung 5-22: Modellierung des oberen RDB Bereichs 80 Abbildung 5-23: Nodalisierung der aktiven Zone 81 Abbildung 5-24: Radiale Anordnung der 28(+1) Brennelement Typen 82 Abbildung 5-25: Axiale Unterteilung des TRACE Modells 83 Abbildung 6-1: Kühlmitteltemperaturen am Eintritt #1 90 Abbildung 6-3: Kühlmitteltemperaturen am Eintritt #4 92 Abbildung 6-4: Kühlmitteltemperaturen am Eintritt #4 92	6 7 8 9 0 1 2 3 5 0 1 1 2
Abbildung 5-18: Radiale Unterteilung des Pellets 76 Abbildung 5-19: Vereinfachte Darstellung des Bodenbereiches 77 Abbildung 5-20: Position der Druckdifferenz Messpunkte im RDB 76 Abbildung 5-21: Schematische Darstellung der Konsole 78 Abbildung 5-22: Modellierung des oberen RDB Bereichs 86 Abbildung 5-23: Nodalisierung der aktiven Zone 87 Abbildung 5-24: Radiale Anordnung der 28(+1) Brennelement Typen 88 Abbildung 5-26: Grafische Darstellung des TRACE Modells 88 Abbildung 6-21: Kühlmitteltemperaturen am Eintritt #1 96 Abbildung 6-21: Kühlmitteltemperaturen am Eintritt #2 97 Abbildung 6-21: Kühlmitteltemperaturen am Eintritt #3 97 Abbildung 6-21: Kühlmitteltemperaturen am Eintritt #4 97 Abbildung 6-3: Kühlmitteltemperaturen am Eintritt #4 97 Abbildung 6-3: Kühlmitteltemperaturen am Eintritt #4 97 Abbildung 6-4: Kühlmitteltemperaturen am Eintritt #4 97 Abbildung 6-5: Temperaturen im Kühlmittelaustrittsstutzen #1 in Abhängigkeit des	6 7 8 9 0 1 2 3 5 0 1 2
Abbildung 5-18: Radiale Unterteilung des Pellets 70 Abbildung 5-19: Vereinfachte Darstellung des Bodenbereiches 71 Abbildung 5-20: Position der Druckdifferenz Messpunkte im RDB 71 Abbildung 5-21: Schematische Darstellung der Konsole 71 Abbildung 5-22: Modellierung des oberen RDB Bereichs 71 Abbildung 5-23: Nodalisierung der aktiven Zone 81 Abbildung 5-24: Radiale Anordnung der 28(+1) Brennelement Typen 82 Abbildung 5-25: Axiale Unterteilung des TRACE Modells 83 Abbildung 5-26: Grafische Darstellung des TRACE Modells 84 Abbildung 6-1: Kühlmitteltemperaturen am Eintritt #1 94 Abbildung 6-3: Kühlmitteltemperaturen am Eintritt #2 9 Abbildung 6-3: Kühlmitteltemperaturen am Eintritt #4 92 Abbildung 6-5: Temperaturen im Kühlmittelaustrittsstutzen #1 in Abhängigkeit des zeitlichen Verlaufes der Transiente 93	6 7 8 9 0 1 2 3 5 0 1 1 2 3
Abbildung 5-18: Radiale Unterteilung des Pellets 76 Abbildung 5-19: Vereinfachte Darstellung des Bodenbereiches 77 Abbildung 5-20: Position der Druckdifferenz Messpunkte im RDB 78 Abbildung 5-21: Schematische Darstellung der Konsole 79 Abbildung 5-22: Modellierung des oberen RDB Bereichs 86 Abbildung 5-23: Nodalisierung der aktiven Zone 87 Abbildung 5-24: Radiale Anordnung der 28(+1) Brennelement Typen 82 Abbildung 5-26: Grafische Darstellung des TRACE Modells 88 Abbildung 6-21: Kühlmitteltemperaturen am Eintritt #1 96 Abbildung 6-2: Kühlmitteltemperaturen am Eintritt #2 97 Abbildung 6-3: Kühlmitteltemperaturen am Eintritt #4 97 Abbildung 6-4: Kühlmitteltemperaturen am Eintritt #4 97 Abbildung 6-5: Temperaturen im Kühlmittelaustrittsstutzen #1 in Abhängigkeit des zeitlichen Verlaufes der Transiente 97 Abbildung 6-6: Temperaturen im Kühlmittelaustrittstutzen #2 in Abhängigkeit des 97	6 7 8 9 0 1 2 3 5 0 1 1 2 3

Abbildung 6-7: Temperaturen im Kühlmittelaustrittstutzen #3 in Abhängigkeit des
zeitlichen Verlaufes der Transiente94
Abbildung 6-8: Temperaturen im Kühlmittelaustrittstutzen #4 in Abhängigkeit des
zeitlichen Verlaufes der Transiente95
Abbildung 6-9: Temperaturverteilung im Ringraum zum Zeitpunkt t = 0 s
Abbildung 6-10: Temperaturverteilung im Ringraum zum Zeitpunkt t = 1800 s97
Abbildung 6-11: Zeitlicher Verlauf der Kühlmittelvermischung in Höhe der
Kühlmitteleintrittsstutzen97
Abbildung 6-12: Schematische Darstellung der Kühlmitteleinspeisung und -
vermischung im Ringraum98
Abbildung 6-13: Strömungspfad des Kühlmittels im unteren Plenum [San06] 100
Abbildung 7-1: Anordnung der Steuerstäbe im Kern des WWER-1000 102
Abbildung 7-2: Relative Leistungsverteilung in radialer Richtung für das Szenario 1
Abbildung 7-3: Relative Leistungsverteilung in radialer Richtung für das Szenario 2
Abbildung 7-4: Relative Leistungsverteilung in radialer Richtung für das Szenario 3
Abbildung 7-5: Relative Leistungsverteilung in radialer Richtung für das Szenario 4
Abbildung 7-6: Relative Leistungsverteilung in radialer Richtung für das Szenario 5
Abbildung 7-7: Relative Leistungsverteilung in radialer Richtung für das Szenario 6
Abbildung 7-8: Relative Leistungsverteilung in radialer Richtung für das Szenario 7
Abbildung 7-9: Vergleich der k _{eff} Werte mit anderen Teilnehmern des Benchmarks
Abbildung 7-10: Reaktivität 1 113
Abbildung 7-11: Reaktivität 2 114
Abbildung 7-12: Vergleich der relativen axialen Leistungsverteilungen
Abbildung 7-13: Sekundärkreislauf des WWER-1000116
Abbildung 7-14: Temperaturen am Kühlmitteleintritt
Abbildung 7-15: Massenströme am Kühlmitteleintritt

Abbildung 7-16: Relatives axiales Leistungsprofil im stationären Zustand
Abbildung 7-17: Relative radiale Leistungsverteilung im stationären Zustand 119
Abbildung 7-18: Kühlmitteltemperaturen am Eintritt #1 120
Abbildung 7-19: Kühlmitteltemperaturen am Eintritt #2 121
Abbildung 7-20: Kühlmitteltemperaturen am Eintritt #3 121
Abbildung 7-21: Kühlmitteltemperaturen am Eintritt #4 122
Abbildung 7-22: Drücke am Kühlmittel-Eintritt 122
Abbildung 7-23: Zeitlicher Verlauf der Reaktorleistung 123
Abbildung 7-24: Relative axiale Leistungsverteilung während der Transiente 124
Abbildung 7-25: Relative radiale Leistungsverteilung zum Zeitpunkt t = 166 s 124
Abbildung 7-26: Relative radiale Leistungsverteilung zum Zeitpunkt t = 600 s 125
Abbildung 7-27: Zeitliches Verhalten der Temperaturen an den Kühlmittel-Austritten
Abbildung 7-28: Drücke am Kühlmittel-Austritt 126
Abbildung 7-29: Ablauf der Transiente am Beispiel der KM-Eintrittstemperatur #4
Abbildung 7-30: Schematische Darstellung der Rückströmung in Loop #4 128
Abbildung 7-31: Verlauf der Reaktivität in Abhängigkeit vom zeitlichen Ablauf der
Transiente130

Tabellenverzeichnis

Tabelle 2-1: Betriebsparmeter des PKL im stationären Zustand bei 100 % Leistung	
[Koz02]15	
Tabelle 2-2: Auslegungsdaten des WWER-1000 Reaktordruckbehälters [Koz02] 15	
Tabelle 2-3: Geometrische Daten eines Brennelementes (BOC) [Koz02] 18	
Tabelle 3-1: Auflistung der TRACE spezifischen Dateien	
Tabelle 5-1: Axiale Einteilung	
Tabelle 5-2: Ermittelte thermohydraulische Zellenparameter	
Tabelle 5-3: Parameter für die TRACE Komponente HTSTR76	
Tabelle 5-4: Ausgewählte Druckdifferenzen im stationären Zustand	
Tabelle 5-5: Definition der Brennelemente	
Tabelle 6-1: Anfangsbedingungen im KM-Eintritt #1	
Tabelle 6-2: Anfangsbedingungen im KM-Eintritt #2	
Tabelle 6-3: Anfangsbedingungen im KM-Eintritt #3	
Tabelle 6-4: Anfangsbedingungen im KM-Eintritt #4	
Tabelle 6-5: Vergleich ausgewählter Parameter zum Zeitpunkt t = 0 s	
Tabelle 6-6: Vergleich ausgewählter Parameter zum Zeitpunkt t = 1800 s	
Tabelle 6-7: Gegenüberstellung der Kühlmittelaustrittstemperaturen	
Tabelle 6-8: Kühlmittelaustausch in azimutale Richtung im Ringraum auf Höhe der	
Kühlmitteleintrittsstutzen	
Tabelle 7-1: Definition der Steuerstabstellungen für die "Hot Zero Power" Szenarien	
Tabelle 7-2: Positionen der Steuerstabgruppen	
Tabelle 7-3: Betriebsparameter bei 100 % Leistung 118	
Tabelle A-1: Kühlmitteleintrittstemperatur für Strang #1	
Tabelle A-2: Kühlmitteleintrittstemperatur für Strang #2 139	
Tabelle A-3: Kühlmitteleintrittstemperatur für Strang #3 140	
Tabelle A-4: Kühlmitteleintrittstemperatur für Strang #4	
Tabelle A-5: Druck am Reaktoraustritt (Strang #1 - #4) 142	
Tabelle A-6: Kühlmitteldurchsatz Kalter Strang #1143	
Tabelle A-7: Kühlmitteldurchsatz Kalter Strang #2 144	
Tabelle A-8: Kühlmitteldurchsatz Kalter Strang #3145	
Tabelle A-9: Kühlmitteldurchsatz Kalter Strang #4146	

Tabelle B-1: Kühlmitteleintrittstemperatur für Strang #1	147
Tabelle B-2: Kühlmitteleintrittstemperatur für Strang #2	148
Tabelle B-3: Kühlmitteleintrittstemperatur für Strang #3	149
Tabelle B-4: Kühlmitteleintrittstemperatur für Strang #4	150
Tabelle B-5: Kühlmitteldurchsatz Kalter Strang #1	151
Tabelle B-6: Kühlmitteldurchsatz Kalter Strang #2	152
Tabelle B-7: Kühlmitteldurchsatz Kalter Strang #3	153
Tabelle B-8: Kühlmitteldurchsatz Kalter Strang #4	154
Tabelle B-9: Druck am Reaktoreintritt #1	155
Tabelle B-10: Druck am Reaktoreintritt #2	156
Tabelle B-11: Druck am Reaktoreintritt #3	157
Tabelle B-12: Druck am Reaktoreintritt #4	158

Verzeichnis der Abkürzungen und Akronyme

ATHLET	Analysis of Thermal-hydraulics of Leaks and Transients
ATWS	Anticipated Transients Without Scram
BOC	Begin of Cycle
CATHARE	Code for Analysis of Thermal-Hydraulics during an Accident of Reactor and Safety Evaluation
CEA	Commissariat à l'Energie Atomique
CFD	Computational Fluid Dynamic
COBRA	Coolant Boiling in Rod Arrays Code
DE	Dampferzeuger
DWR	Druckwasserreaktor
EOC	End of Cycle
FD	Frischdampf
FZK	Forschungszentrum Karlsruhe
FZR	Forschungszentrum Rossendorf
GRS	Gesellschaft für Reaktorsicherheit
IAEA	International Atomic Energy Agency
INRNE	Institute for Nuclear Research and Nuclear Energy
IRS	Institut für Reaktorsicherheit
ISL	Information Systems Laboratory
KAIST	Korea Advanced Institute of Science and Technology
KKW	Kernkraftwerk
КМ	Kühlmittel
KU	Taras Shevchenko National University of Kyiv
LWR	Leichtwasserreaktoren
MSLB	Major Steam Line Break
NEA	Nuclear Energy Agency

NRC	National Regulatory Comission
NRI	Nuclear Research Institute Rez plc.
OECD	Organization for Economic Cooperation and Development
OEEC	European Nuclear Energy Agency
ORNL	Oak Ridge National Laboratory
PARCS	Purdue Advanced Reactor Core Simulator
PKL	Primärkreislauf
PSU	Pennsylvania State University
PVM	Parallel Virtual Machine
RDB	Reaktordruckbehälter
RELAP	Reactor Exkursion and Leak Analysis Program
RESA	Reaktorschnellabschaltung
RIA	Reactivity Initiated Accident
RRC KU	Kurchatov Institute
SNAP	Symbolic Nuclear Analysis Package
SWR	Siedewasserreaktor
TRAC	Transient Reactor Analysis Code
TRACE	TRAC/RELAP Advanced Computational Engine
UPISA	University of Pisa
VTT	Technical Research Centre of Finland
WWER	Druckwasserreaktor russischer Bauart
	(vvassei-vvassei-Eiteryte-Reaktor)

Formelverzeichnis

A _d	Durchströmte Fläche	m²
A _n	Fläche eines Vielecks mit n Ecken	m²
A ^{äqui}	Äquivalenter Kreisdurchmesser	m²
$A^{(\)}_{Gesamt,i}$	Gesamtfläche	m²
$A^{(\)}_{\text{Fest},i}$	Fläche des flüssigen Anteils	m²
A ⁽⁾ Flüssig,i	Fläche des festen Anteils	m²
B _i	Brennelemente pro Ring	
Ci	Dichte der Vorläuferkerne, aus denen verzögerte Neutronen der Gruppe i entstehen	
Ν	Brennstäbe pro Brennelement	-
$N_i^{(xr)}$	Brennstäbe auf der xr Grenzfläche	-
$N_i^{(yt)}$	Brennstäbe auf der yt Grenzfläche	-
G	Massenstrom	kg/s
S	Anzahl der Sektoren	-
Т	Temperatur	К
Τ _M	Temperatur des Moderators	К
Τ _Β	Temperatur des Brennstoffes	К
U	Umfang	m
U _{benetzt}	Benetzter Umfang	m
V _{Gesamt}	Gesamtvolumen der Zelle	m³
V _{Fest}	Volumen des festen Anteils der Zelle	m³
V _{Flüssig}	Volumen des flüssigen Anteils der Zelle	M³
0	Wärmoloitzohl	$m^{2/c}$
a		111 - /S
CB	Bonrkonzentration	ppm

Ci	Reibungskoeffizient an der Grenzfläche	kg/m ⁴
C _{wg}	Reibungskoeffizient zwischen Wand und gasförmigen Phase	kg/m ⁴
C _{wl}	Reibungskoeffizient zwischen Wand und flüssiger Phase	kg/m ⁴
d _{pin}	Brennstabdurchmesser	m
eg	Spezifische innere Energie der gasförmigen Phase	KJ/kg
el	Spezifische innere Energie der flüssigen Phase	KJ/kg
f	Thermischer Nutzfaktor	-
frfaxr	Anteil des flüssigen Strömungsquerschnittes in xr-Richtung	-
frfayt	Anteil des flüssigen Strömungsquerschnittes in yt-Richtung	-
frfaz	Anteil des flüssigen Strömungsquerschnittes in z-Richtung	-
frfvol	Anteil des flüssigen Volumens	-
g	Erdbeschleunigung	m/s²
h _v '	Verdampfungsenthalpie	KJ/kg
hz	Zellenhöhe	m
hd	Hydraulischer Durchmesser	m
hdxr	Hydraulischer Durchmesser in xr-Richtung	m
hdyt	Hydraulischer Durchmesser in yt-Richtung	m
hdz	Hydraulischer Durchmesser in z-Richtung	m
k _{eff}	Effektiver Multiplikationsfaktor	-
n	Neutronendichte	1/cm ³
n	Anzahl der Ecken eines Vielecks	
р	Druck	N/m²
q	Wärmestromdichte	W/m³
q _{dg}	Durch Strahlung eingetragener Wärmestrom in die gasförmige Phase pro Volumeneinheit	W/m³
q _{dl}	Durch Strahlung eingetragener Wärmestrom in die flüssige Phase pro Volumeneinheit	W/m³
q _{gl}	Fühlbare Wärme pro Volumeneinheit	W/m³

q _{ig}	Wärmestrom von der Grenzfläche zur gasförmigen Phase pro Volumeneinheit	
q _{wg}	Wärmestrom zwischen Wand und gasförmiger Phase pro Vo- lumeneinheit	
q _{wl}	Wärmestrom zwischen Wand und flüssiger Phase pro Volu- meneinheit	
r	Ortsvektor	-
t	Zeit	S
V	Neutronengeschwindigkeit	m/s²
V'	Neutronengeschwindigkeit	m/s²
Vg	Geschwindigkeit der gasförmigen Phase	m/s²
VI	Geschwindigkeit der flüssigen Phase	m/s²
Г	Massenstromdichte	g/(m³s)
Σ	Makroskopischer Wirkungsquerschnitt	1/cm
Σ_{f}	Makroskopischer Spaltungsquerschnitt	1/cm
Σ _{in}	Makroskopischer Wirkungsquerschnitt für inelastische Streuung	1/cm
Σ_{el}	Makroskopischer Wirkungsquerschnitt für inelastische Streuung	1/cm
Φ_{g}	Neutronenflussdichte	1/(cm²s)
Ω	Einheitsvektor der Streurichtung	-
Ω '	Einheitsvektor der Streurichtung	-

α	Void-Anteil	-
α	Wärmeübergangskoeffizient	W/Km ²
β	Anteil der verzögerten Neutronen	-
λ_i	Zerfallskonstante der Gruppe i	1/s
v	Anzahl der freigesetzten Neutronen pro Spaltung	-
ρ	Reaktivität	\$; pcm

-

$ ho_g$	Dichte der gasförmigen Phase	kg/m³
ρι	Dichte der flüssigen Phase	kg/m³
ρ _M	Dichte des Moderators	kg/m³
Х	Energieverteilung der Spaltneutronen	-
Xi	Geschwindigkeitsverteilung der Neutronen der Gruppe i	-

$$\nabla \qquad \text{Nabla-Operator} \qquad \nabla = \frac{\partial}{\partial x} \mathbf{\ddot{i}} + \frac{\partial}{\partial y} \mathbf{\ddot{j}} + \frac{\partial}{\partial z} \mathbf{\ddot{k}}$$

1 Einleitung

1.1 Motivation

Computer sind aus dem Leben vieler Menschen nicht mehr wegzudenken. Am Anfang noch dazu benutzt das Leben zu vereinfachen, ist das Arbeiten ohne Computer heute zum Teil unmöglich. Dies gilt unter anderem auch für das Gebiet der nuklearen Sicherheitsforschung. Mittels Computer und Computerprogrammen wurde es in den letzten Dekaden möglich, eine Vielzahl von ausgewählten Abläufen in einen Kernkraftwerk zu simulieren. Seit Beginn der Entwicklung der ersten Computerprogramme, die auf die Bedürfnisse der Kerntechnik zugeschnitten sind, kamen eine Vielzahl – eine fast unüberschaubare Vielzahl – von neuen Programmen hinzu. Angefangen im Jahre 1962 mit dem Programm FLASH [www1] bis hin zu heutigen Programmen wie RELAP5 [ISL01], ATHLET [GRS05] oder CATHARE [GRS05], gibt es für fast jeden Bereich der Sicherheitsforschung eigene Programme [Bro95; Lil95]. Spätestens nach der teilweisen Kernschmelze des Kernkraftwerkes Three Mile Island 2 im Jahre 1979 wurden diese Entwicklungen verstärkt vorangetrieben [Lil95]. Die Abbildung 1-1 gewährt einen Uberblick über die Entwicklung von RELAP, COBRA [Thu83] und TRACE [Oda04]. Eine ausführliche Beschreibung von Programmsystemen/Codes für die verschiedensten Anwendung ist in [GRS05] zu finden.

Die aktuelle Entwicklung von derartigen Programmen verfolgt dabei folgende Ziele:

- Verbesserung und Weiterentwicklung bestehender Programmsysteme (Einarbeitung von Zweiphasen-Modulen, Mehrkomponenten-Systeme, Implementierung neuester Korrelationen für Wärmeübergang, Druckverlust, Reibung, etc.).
- Validierung der Programme durch Einbeziehung von experimentell gewonnen Daten aus Einzelstab-, Bündel- oder Integralexperimenten.
- Kopplung von Programmsystemen zur integralen Aussagefähigkeit des zu simulierenden Ablaufes (3D-Thermohydraulik + 3D-Neutronenkinetik; Zusammenspiel Primärkreislauf - Containment).
- Entwicklung von Methoden zur Bewertung der Vorhersagbarkeit von Rechencodes mittels Unsicherheits- und Sensitivitätsmodellen.

Abbildung 1-1: Entwicklungsschritte von TRACE [Cur90]

Die Kopplung zweier Programmsysteme ist für diese Arbeit von zentraler Bedeutung. Unter Einsatz der Programme TRACE (3D-Thermohydraulik) und PARCS (3D-Neutronenkinetik) werden die in der Aufgabestellung definierten Ziele bearbeitet [Joo02; Oda04 und Spo00]. Beide Programme gehören zu den neuesten, zum Teil sich noch in der Entwicklung befindlichen, Codes die derzeit von vielen internationa-Ien Einrichtungen benutzt werden. Die Qualifizierung/Validierung dieser beiden Programme ist ein Teil aktueller Forschungsvorhaben am Forschungszentrum Karlsruhe auf dem Gebiet der Multi-Physik. Da es sich um relativ neu entwickelte Programme handelt, bedarf es einer umfangreichen Qualifizierung. Aus diesem Grund werden internationale Benchmarks ins Leben gerufen, die das Ziel haben neue Programmsysteme zu validieren. Mittels zuvor gewonnener experimenteller Daten werden die Ergebnisse der Programme verglichen. Grundvoraussetzung dafür ist eine genaue Übernahme der Randbedingungen damit möglichst gleiche Voraussetzungen geschaffen werden. Ein guter Code zeichnet sich dadurch aus, dass er den genauen experimentellen Verlauf wiedergibt und dabei eine Vielzahl von physikalischen Phänomenen beschreibt bzw. berücksichtigt.

1.2 Arbeitsgrundlagen

Im Jahre 1958 wurde die European Nuclear Energy Agency (OEEC) gegründet. Nach dem Beitritt des ersten nicht europäischen Vertreters (Japan), wurde die OEEC im Jahre 1972 in die Nuclear Energy Agency (NEA) umbenannt. Die NEA ist eine Unterorganisation der OECD (Organization for Economic Cooperation and Development). Das primäre Ziel der NEA ist die Förderung und Entwicklung der Kernenergie als eine sichere, ökologische und ökonomische Energiequelle. Um diese Ziele zu realisieren, arbeitet die NEA eng mit anderen Organisationen wie der International Atomic Energy Agency (IAEA), sowie mit den verschiedensten Einrichtungen auf dem Gebiet der nuklearen Sicherheitsforschung, zusammen.

Als Resultat jahrelanger Untersuchungen verschiedenster Betriebsstörungen und Störfälle, wie z.B. Kühlmittelverluststörfälle, Reaktivitätstransienten etc., wurden bzw. werden Benchmarks definiert. Ziel dieser Benchmarks ist es, mit geeigneten Mittel die oben erwähnten Abläufe hinreichend genau nachzubilden. Dies kann zum einen durch Experimente, z.B. an kleinen Versuchsanlagen erzielt werden. Eine andere, kostengünstigere, Maßnahme ist die Simulation mit Hilfe von Computercodes. Mit diesen Codes können die thermohydraulischen und zum Teil auch die neutronen-physikalischen Abläufe abgebildet werden.

Für den WWER-1000 wurde in jüngster Vergangenheit ein Benchmark definiert, wobei der Block 6 des Kernkraftwerks Kozloduy als Referenzanlage dient. Dieser Benchmark mit der Bezeichnung V1000CT (VVER-1000 Coolant Transient Benchmark) untersucht zum Beispiel das Verhalten des Kühlmittels hinsichtlich Vermischung. Der Benchmark V1000CT besteht aus zwei Phasen.

Phase 1 (V1000CT-1) wurde unter Federführung der Pennsylvania State University (PSU) spezifiziert und befasst sich mit dem Wiederanfahren einer Hauptkühlmittelpumpe.

Phase 2 (V1000CT-2) beschreibt die Kühlmittelvermischung und einen Bruch einer Frischdampfleitung. Diese Phase wird durch das französische Commissariat à l'Energie Atomique (CEA) geleitet.

Die Phase 1 des Benchmarks ist in drei Aufgaben unterteilt. In der ersten Aufgabe soll die Gesamtanlage unter Verwendung der Punktkinetik simuliert werden. Die nächste Aufgabe soll unter Verwendung von Anfangs- und Randbedingungen die 1D Thermohydraulik/3D-Neutronik des Reaktordruckbehälters untersuchen. Der letzte Teil der Phase 1 besteht aus der Verbindung der ersten zwei Aufgaben und stellt eine integrale Simulation der Gesamtanlage dar. Diese Phase wurde bereits erfolgreich abgeschlossen.

Die Phase 2 ist zurzeit Gegenstand weltweiter Untersuchungen. Neben dem am Forschungszentrum Karlsruhe (FZK) ansässigen Institut für Reaktorsicherheit (IRS), beteiligen sich noch:

- Das CEA,
- Das Forschungszentrum Rossendorf (FZR),
- Die Gesellschaft für Reaktorsicherheit (GRS),
- Das Institute for Nuclear Research and Nuclear Energy (INRNE),
- Das Korea Advanced Institute of Science and Technology (KAIST),
- Die Taras Shevchenko National University of Kyiv (KU),
- Das Nuclear Research Institute Rez plc. (NRI),
- Das Oak Ridge National Laboratory (ORNL),
- Die PSU,
- Das Kurchatov Institute (RRC KU),
- Die University of Pisa (UPISA) und
- Das Technical Research Centre of Finland (VTT).

Die Phase 2 ist wie die Phase 1 in drei Teile unterteilt. Teil 1 befasst sich mit dem Kühlmittelvermischungsexperiment. Teil 2 behandelt die Berechnung des RDB mit gegebenen Anfangs- und Randbedingungen für einen Bruch einer Frischdampfleitung unter Verwendung von 3D-Thermohydraulik/3D-Neutronik Codes. Teil 3 ist die Simulation der Gesamtanlage mit der Nutzung der Codes, die schon für Teil 2 verwendet wurden. Der Benchmark beinhaltet alle relevanten Informationen die benötigt werden um die in den einzelnen Phasen bzw. Aufgaben definierten Abläufe nachzubilden. Neben der Geometrie schließt dies auch Anlagenparameter, Wirkungsquerschnitte und Materialangaben ein.

Neben den Vergleich der Referenzwerte mit den berechneten Werten, kommt es auch zu so genannten Code-to-Code Vergleichen, wo Ergebnisse der verschiedenen Codes untereinander verglichen werden. Für die Phase 1 verwendete so z.B. das IRS den Code RELAP5/MOD3.3, während die GRS den Code ATHLET und die PSU den Code TRAC-PF1/MOD2 verwendete.

1.3 Ziel der Arbeit

Diese Arbeit kann im wesentlichem in drei Aspekte unterteilt werden:

- Entwicklung,
- Qualifizierung und
- Anwendung

eines 3D-Modells eines Reaktordruckbehälters für einen russischen WWER-1000 zur sicherheitstechnischen Untersuchung mittels dem gekoppelten Programmsystem TRACE/PARCS auf Basis des VVER-1000 Coolant Transient Benchmark.

- Entwicklung: In einem ersten Schritt wird unter Verwendung von detaillierten geometrischen Daten ein 3D-Modell des RDB erstellt. Durch die Verwendung einer 3D-Komponente (VESSEL-Komponente) können mit diesem Modell auch mehrdimensionale Phänomene beschrieben werden.
- Qualifizierung: Nach der Entwicklung des Modells wird dieses anhand eines Kühlmittelvermischungsphänomens, bezüglich der Vergleichbarkeit zu experimentell ermittelten Werten, qualifiziert.
- Anwendung: Im Anschluss an die Qualifizierung des Modells erfolgt die Anwendung des Modells. Hierfür wurde im Rahmen des internationalen Benchmarks ein Bruch einer Frischdampfleitung postulierter.

Neben diesen drei Teilen (Kapitel 5 bis 7) existieren noch weitere Kapitel in dieser Arbeit. Im Anschluss an diese Einleitung wird der russische Kernkraftwerkstyp WWER-1000 vorgestellt (Kapitel 2). Dieser Typ dient als Grundlage für diese Arbeit. Nachdem der WWER-1000 und seine Besonderheiten beschrieben wurde, folgen die Kapitel 3 (Das Programmsystem TRACE) und 4 (Das Programmsystem PARCS). In diesen beiden Kapiteln werden die zwei Programmsysteme vorgestellt die als Werkzeug zur Beschreibung von ausgewählten Transienten dienen. Die Beschreibung des Programms TRACE fällt ausführlicher aus als die für PARCS. Dies folgt aus der Tatsache, dass die Entwicklung des Modells hauptsächlich für TRACE erfolgte. Die Erstellung der PARCS Eingabedatei und des neutronenphysikalischen Mappings erfolgte im IRS. Alle anderen Modelle und sämtliche Ergebnisse im Rahmen dieser Diplomarbeit wurden während der Zeit am IRS erstellt.

1.4 Theoretische Betrachtungen

1.4.1 Kühlmittelvermischung

Bei Kühlmittelverluststörfällen (LOCA) kann es zu unterschiedlichen Temperaturen in den einzelnen Primärkreisläufen kommen, z.B. durch Isolation eines Dampferzeugers, kann es zu einer ungleichmäßigen Einspeisung in den RDB kommen. Durch die unterschiedlichen Temperaturen des Kühlmittels und den damit einhergehenden unterschiedlichen Moderatortemperaturkoeffizienten für die Reaktivität kommt es zu einer Verzerrung der Leistungsverteilung im Kern. Daher ist es von hoher Bedeutung eine gute Vermischung des Kühlmittels zu realisieren. Beschrieben wird das Phänomen der Kühlmittelvermischung durch folgende Differentialgleichung [Grun03]:

$$\frac{\partial T}{\partial t} + v_{x} \frac{\partial T}{\partial x} + v_{y} \frac{\partial T}{\partial y} + v_{z} \frac{\partial T}{\partial z} = a \left(\frac{\partial^{2} T}{\partial x^{2}} + \frac{\partial^{2} T}{\partial y^{2}} + \frac{\partial^{2} T}{\partial z^{2}} \right).$$
(1.1)

Hierbei ist a die Wärmeleitzahl und $v_{x,y,z}$ ist die Geschwindigkeit und T die Temperatur. Im Wesentlichen ist die Temperaturdifferenz der Antrieb für eine Vermischung. Dabei beeinflusst neben der Temperaturdifferenz auch die Wärmeleitzahl die Vermischung. Ein anderes Beispiel für eine Kühlmittelvermischung ist die Verteilung der Bohrsäure im Primärkreislauf eines Druckwasserreaktors. Zu Vermischungen kommt es hauptsächlich im Ringraum und im unteren Plenum.

1.4.2 Unterkühlungstransiente

Der Bruch einer FD-Leitung führt zu einer Unterkühlungstransiente. Zur Unterkühlung kann es ebenfalls durch Ausfall der Speisewasservorwärmstrecke kommen. Als Folge eines Bruches einer FD-Leitung kommt es zu einem rapiden Druckabfall im betrachteten Dampferzeuger, was ein Ausdampfen zu Folge hat. Im Zustand der Zweiphasenströmung wird der Wärmeübergang begünstigt und es wird mehr Wärme abgeführt. Dadurch reduziert sich die Temperatur des Kühlmittels im betroffenen Strang des Primärkreislaufes und liegt damit unter den Temperaturen der anderen Stränge. Dieses unterkühlte Kühlmittel zieht eine Steigerung der Moderatortemperatur- und der Doppler-Temperatur-Koeffizienten nach sich. Dies wiederum führt zu einem Anstieg der thermischen Reaktorleistung. Da nur ein Strang und somit nur ein Viertel des Kernes betroffen sind, kommt es zu einer Verzerrung in der Leistungsverteilung. Nach dem Überschreiten eines Grenzwertes (z.B. 1,2 fache Nennleistung) kommt es zu einer Zufuhr von negativer Reaktivität in Form von eingeführten Abschaltstäben (RESA). Dadurch wird der Reaktor in einen unterkritischen Zustand überführt, was ein Absinken der Leistung mit sich führt. Der Bruch einer FD-Leitung ist trotz des integralen Ausmaßes auf die Sicherheit der Gesamtanlage ein Auslegungsstörfall, dessen Beherrschung eine wichtige Rolle in einem Lizenzierungsverfahren für ein Kernkraftwerk spielt. Die computergestützte Beschreibung dieser und ähnlicher Störfälle ist daher ein zentraler Bestandteil einer umfangreichen sicherheitstechnischen Bewertung. Durch die in den Codes physikalischen Modelle und deren implementierten, Abhängigkeiten bzw. Zusammenhänge und die genauen Kenntnisse von geometrischen und reaktorphysikalischen Parametern (Anordnung von Steuerstäbe, Borgehalt etc.), können Vorhersagen bezüglich neutronenphysikalischen wie auch thermohydraulischen Verhaltens des Kerns getroffen werden.

2 Der Reaktor vom Typ WWER-1000

Für die beabsichtigte Untersuchung ist eine detaillierte Beschreibung des Kernreaktors notwendig, da die beiden Codes TRACE und PARCS genaueste Beschreibungen hinsichtlich Geometrie und Betriebsverhalten voraussetzen. Darum wird in diesem Kapitel der russische Druckwasserreaktor vom Typ WWER-1000 V320 am Beispiel der Anlage Kozloduy 6 vorgestellt.

2.1 Primärkreislauf

Das Kernkraftwerk Kozloduy 6 wurde 1991 in Betrieb genommen und verfügt über eine thermische Leistung von 3000 MW (1000 MWe). Abbildung 2-1 zeigt den Primärkreislauf des WWER-1000 [Par01].

Abbildung 2-1: Primärseitige Darstellung eines WWER-1000 [Par01]

Der WWER-1000 ist eine 4-Loop Anlage (Abbildung 2-2) und vergleichbar mit westlichen Reaktoren der Konvoi-Reihe.

Abbildung 2-2: Draufsicht auf einen WWER-1000 [lva04]

Wesentlicher Unterschied zu westlichen Reaktoren ist die Gestaltung der Dampferzeuger (DE). Die DE sind liegend ausgeführt, was den Platzbedarf im Gegensatz zu stehenden DE enorm steigert. Diese Bauweise der DE hat den Vorteil, dass bei einer Leckage oder gar einem Bruch der Frischdampfleitung der Wasserstand langsamer absinkt als bei einem stehendem Dampferzeuger, da die Wasseroberfläche in einem liegendem Dampferzeuger größer ist als in einem stehendem. Somit würden in einem Notfall die Wärmeübertragerrohre länger mit Wasser bedeckt sein. Damit könnte die Wärmeabfuhr des erhitzten Kühlmittels länger aufrechterhalten werden. In den beiden nachstehenden Abbildungen ist der DE vom Typ PGV-1000M in der Seitenbzw. Frontalansicht dargestellt.

- Behälter 1.
- 2. Entwässerung
- Abblaseöffnung Wärmeübertragerrohre 3.
- 4.
- 5. Seperator 6.
 - Speisewassereindüsung
- Entlüftung
- Speisewassernotfalleindüsung 8.
- Dampfleitung Dampfsammler 9.
- 10.
- 11. Notfall Einspeisung
- 12. Inspektionsöffnung

Abbildung 2-3: Seitenansicht eines Dampferzeugers vom Typ PGV-1000M [Iva04]

Abbildung 2-4: Frontalschnitt durch einen Dampferzeuger eines WWER-1000 [lva04]

Zur Komplettierung des Primärkreislaufes dienen die beiden nächsten Abbildungen. Abbildung 2-5 zeigt einen Schnitt durch eine der vier Hauptkühlmittelpumpen und Abbildung 2-6 zeigt den Druckhalter des Systems.

Abbildung 2-5: Hauptkühlmittelpumpe vom Typ GCN-195M [lva04]

1.	Verschluss

- 2. Inspektionsöffnung
- 3. Sprüh-System
- 4. Behälter
- 5. Schild
- 6 Service Plattform
- 7. Elektrische Heizung
- 8. PKL Anschluss
- 9. Lagerung
- 10. Leiter
- 11. Einspritzung
- 12. Dampfaustritt

Abbildung 2-6: Schnitt durch den Druckhalter [lva04]

Anhand der gezeigten Abbildung und der folgenden Tabelle 2-1 kann sich ein genauen Überblick über den Primärkreislauf des WWER-1000 verschafft werden.
Merkmal	Auslegungswerte
Thermische Leistung [MW]	3000
Druck über dem Kern [MPa]	15,65
Temperatur im Druckhalter [K]	620.0 ± 1
Wasserstand im Druckhalter [m]	8,77 ± 0,15
Temperatur am Kühlmitteleintritt [K]	560,0 ± 2
Temperatur am Kühlmittelaustritt [K]	593 ± 3,5
Massendurchsatz [kg/s]	17610 ± 400
Druck am DE-Eintritt	15,64
Kühlmitteltemperatur am DE-Eintritt [K]	591 ± 1
Kühlmitteltemperatur am DE-Austritt [K]	560 ± 2

Tabelle 2-1: Betriebsparmeter des PKL im stationären Zustand bei 100 % Leistung [Koz02]

2.2 Reaktordruckbehälter

Zentrales Element jeden Kernkraftwerks ist der Reaktordruckbehälter (siehe Abbildung 2-7), dessen Gestaltung und Auslegung sich nachhaltig auf die Betriebsführung auswirkt. Der WWER-1000 verfügt über eine thermische Leistung von 3000 MW. Der Kern des WWER-1000 besteht aus 163 hexagonal gestalteten und angeordneten Brennelementen, die in ihrer Leistungsverteilung durch 61 Steuerelemente kontrolliert werden. Tabelle 2-2 gibt eine Zusammenstellung einiger wichtiger reaktorspezifischen Parameter wieder.

Merkmal	Auslegungswerte
Mittlere Kühlmitteltemperatur [K]	576,15
Höhe des Druckbehälters [m]	10,897
Höhe des RDB + Deckel [m]	12,433
Höhe der aktiven Zone [m]	3,55
Außendurchmesser [m]	4,535
Innendurchmesser [m]	4,136
Wandstärke im Bodenbereich [mm]	237
Wandstärke des Zylinders [mm]	192
Durchmesser der Kühlmittelstutzen [mm]	850
RDB Volumen [m ³]	110
Volumen des unteren Plenums [m ³]	16
Volumen des oberen Plenums [m ³]	61,2
Volumen des Ringspalts [m ³]	18
Volumen des Kerns [m ³]	14,8

Tabelle 2-2: Auslegungsdaten des WWER-1000 Reaktordruckbehälters [Koz02]

Abbildung 2-7: RDB eines WWER-1000 mit den wichtigsten Elementen [Iva04]

Der Reaktordruckbehälter ist das zentrale Element in der Simulation der Kühlmittelvermischung und des Bruches der Frischdampfleitung. Um diese Phänomene so genau wie möglich zu beschreiben, muss an dieser Stelle auf Besonderheiten des RDB eingegangen werden, da diese eine wichtige Rolle in der detailgetreuen Beschreibung der Experimente spielen.

2.2.1 Unteres Plenum

Neben dem Ringraum ist das untere Plenum ein Teil des Reaktors, welches für die Kühlmittelvermischung von Bedeutung ist. Das untere Plenum des WWER-1000 ist mit einigen Besonderheiten ausgestattet, die es deutlich von anderen Reaktoren unterscheidet. In Abbildung 2-8 ist das untere Plenum des WWER-1000 dargestellt.

Abbildung 2-8: Unteres Plenum des WWER-1000 [Koe04]

Durch die geometrische Form des gelochten Bodens und das Vorhandensein von Unterstützungssäulen zwischen Kernbehälterboden und unterer Kerntrageplatte, stellt das untere Plenum des WWER-1000 eine komplizierte Anordnung dar. Dadurch ist die Strömungsführung des Kühlmediums ebenfalls komplex. Das Kühlmedium strömt im Ringraum hinunter, durchströmt den perforierten Boden des Kernbehälters und strömt an den unteren Unterstützungssäulen entlang. Anschließend strömt es durch die Perforation der oberen Unterstützungssäulen in die Unterstützungssäulen hinein um schlussendlich die untere Kerntrageplatte durch die vorgesehen Öffnungen zu passieren. Diese Form der Konstruktion erfordert eine komplexe Modellierung.

2.2.2 Die aktive Zone

Das Brennelement dient als Wärmequelle in einem Kernreaktor. Durch die Spaltung von UO₂ im inneren des Brennelementes kommt es zu einer Erhöhung der Brennstofftemperatur. Diese Wärme wird mittels Wärmeleitung und Konvektion an das Kühlmittel transferiert. Da diese Vorgänge durch Material- und Geometrieeigenschaften beeinflusst werden, ist eine genaue Kenntnis dieser Werte erforderlich (Tabelle 2-3).

Merkmal	Wert
Durchmesser des Pellets [mm]	7,56
Durchmesser der Zentralbohrung [mm]	1,4
Außendurchmesser des Hühlrohrs [mm]	9,1
Hühlrohrwandstärke [mm]	0,69
Brennstablänge [mm]	3837
Aktive Brennstablänge, kalt [mm]	3530
Aktive Brennstablänge, heiß [mm]	3550
Abstand der Brennstäbe [mm]	12,75
Anordnung der Brennstäbe [mm]	dreieckig
Anzahl der Steuerstabführungen	18
Außendurchmesser der Steuerstabführungen [mm]	12,6
Innendurchmesser der Steuerstabführungen [mm]	11,0
Anzahl der Brennstäbe	312
Anzahl der Wasserstäbe	1
Außendurchmesser des Wasserstabes [mm]	11,2
Innendurchmesser des Wasserstabes [mm]	9,6
Brennelement Schlüsselweite [mm]	234
Abstand der Brennelemente [mm]	236

Tabelle 2-3: Geometrische Daten eines Brennelementes (BOC) [Koz02]

Abbildung 2-9 zeigt ein Brennelement. Eine Besonderheit ist die hexagonale Anordnung der Brennelemente, was sie von der Anordnung der BE in Reaktoren westlicher Bauart¹ unterscheidet.

Abbildung 2-9: Brennelement eines WWER-1000 Reaktors [lva04]

Auch die Gestaltung des Brennelementkopfes ist eine Besonderheit. Die Strömungsführung im Bereich des Brennelementkopfes ist wie folgt gestaltet. Das Kühlmittel

¹ Quadratische Anordnung der Brennelemente.

strömt entlang der Brennstäbe in Richtung Kopfstück. Das Kopfstück wird durch die Perforation des konischen Teils verlassen. Anschließend durchströmt das Kühlmittel die Bohrungen der oberen Kerntrageplatte, welche direkt über den Brennelementen angeordnet ist, in Richtung oberes Plenum.

Das Pellet des WWER-1000 Brennstabes besitzt eine Zentralbohrung (siehe auch Tabelle 2-3). Die Zentralbohrung führt bei Normalleistungsbetrieb zu einer geringeren Brennstofftemperatur im Zentrum als bei westlichen Reaktoren ähnlicher Leistung. Durch die Bohrung ist das Brennstoffvolumen im Brennstab geringer als bei anderen LWR. Um dies Auszugleichen werden mehr Brennstäbe benötigt. Im Kern des WWER-1000 finden mehr als 50000 Brennstäbe Platz.

Abbildung 2-10: Schnitt durch einen Brennstab eines WWER-1000 [lva04]

Die Werte in Tabelle 2-3 und der Abbildung 2-10 beschreiben den Zustand des Pellets zu Beginn des Einsatzes (BOC) im Reaktor. Im Laufe des Einsatzes können sich die Werte für den Gasspalt und die Zentralbohrung mitunter deutlich von ihren Ausgangswerten unterscheiden. Durch die thermischen Belastungen und die Bildung von Spaltgasen versprödet das Pellet zunehmend und dehnt sich dabei aus. Das führt zum einen zu einer Vielzahl von Rissen und zum anderen zur Überbrückung des Gasspaltes. Im Laufe der Betriebszeit verringert sich dieser, wobei er auch geschlossen werden kann. Der Durchmesser der Zentralbohrung dahingegen wächst im Laufe der Zeit.

2.2.3 Oberes Plenum

Neben dem unteren Plenum ist das obere Plenum ebenfalls von Relevanz für Kühlmittelvermischung. In Abbildung 2-11 ist ein Teilausschnitt des oberen Plenums zu sehen. Deutlich zu erkennen ist ein innerer Ring, den das Kühlmittel auf seinem Weg durch den Kernreaktor überwinden muss. Nach dem Eintritt des Kühlmediums in das obere Plenum strömt es entlang der Steuerstabführungsrohre nach oben, in Richtung Reaktoraustritt. Nach dem erwähnten Passieren des inneren Ringes durchströmt das erwärmte Wasser die Perforationen der Kerntonne, um durch den Kühlmittelaustrittsstutzen in Richtung Dampferzeuger zu strömen.

Abbildung 2-11: Oberes Plenum

2.2.4 Anbindung an den Primärkreislauf

Abbildung 2-11 zeigt ebenfalls, dass die Kühlmitteleintritts- bzw. –austrittsstutzen übereinander angeordnet sind. Zudem sind die Stutzen, wie Abbildung 2-12 zeigt, unsymmetrisch angeordnet.

Abbildung 2-12: Anordnung der Loops

Diese Gestaltung stellt kein Problem im Bezug auf die Modellierung dar, beeinflusst diese aber (siehe Kapitel 5.1.2).

3 Das Programmsystem TRACE

TRACE – TRAC/RELAP Advanced Computational Engine – ist ein auf Fortran 90 basierendes modulares Programmsystem. Dieser Code dient zur Simulation des zeitabhängigen thermohydraulischen Verhaltens von Leichtwasserreaktoren, besonderes bei Auftreten von Transienten, wie z.B. einem Kühlmittelverluststörfall. Neben Druck- und Siedewasserreaktoren können auch kleinere Testanlagen beschrieben werden. TRACE vereinigt somit Fähigkeiten von Codes für Druckwasserreaktoren (RELAP5) und Siedewasserreaktoren (TRAC-B) und soll auf lange Sicht diese beiden Codes ersetzen. Des Weiteren ist TRACE als Ersatz für RAMONA (Kernmodell für Siedewasserreaktoren) vorgesehen. TRACE wurde im Auftrag der amerikanischen Regulierungsbehörde (NRC – National Regulatory Commission) von dem Los Alamos National Laboratory (LANL), dem Information Systems Laboratory (ISL), der PSU und der Purdue University entwickelt [Oda04].

3.1 Aufbau und Struktur

TRACE ist ein modular aufgebautes Programmsystem. Dies erlaubt es nur die entsprechenden Modelle zu benutzen die für den jeweiligen Einsatzbereich benötigt werden. Der in Abbildung 3-1 gezeigt modulare Aufbau von TRACE stellt eine schematische Übersicht dar. In Wirklichkeit besteht TRACE aus einer Vielzahl von Modulen. Die Abbildung soll lediglich den groben Aufbau verdeutlichen. Unter den Begriff "Komponente" sind die verschiedenen Bauteile zu verstehen, die in TRACE eingebaut sind (siehe Kapitel 3.3). Für diese Komponenten werden die verschiedenen Zustandsgleichungen (siehe Kapitel 3.4.1) mit Hilfe der einzelnen Module gelöst.

Abbildung 3-1: Modularer Aufbau von TRACE [Bro95]]

Wie oben bereits ausgeführt, wird mit Hilfe von geometrischen Daten (Längen, Flächen, Volumina, …) und Parametern, die das Arbeitsmedium spezifizieren (Druck, Temperatur, …), ein Model einer Anlage erstellt. Nachdem diese Informationen an den Code übergeben wurden, beginnt die Berechnung. Die Berechnung ist in drei Abschnitte unterteilt. Im ersten Schritt wird überprüft ob alle Daten, die für eine Berechnung benötigt werden, vorhanden sind. Im zweiten Schritt werden die Daten der Eingabe auf Konsistenz untersucht. Das heißt, es wird geprüft ob die physikalischen und geometrischen Daten benachbarter Zellen im Einklang stehen oder ob es zu Abweichung kommt, zum Beispiel der Art, dass die Anfangsgeschwindigkeit an der Austrittsfläche der Zelle A ungleich der Anfangsgeschwindigkeit an der Eintrittsfläche der Zelle A+1 ist. Nachdem dieser Schritt abgearbeitet wurde, beginnt die eigentliche Berechnung. Je nach gewählter Größe für die Zeitschritte werden die Parameter berechnet. Die Berechnung wird solange fortgeführt bis eines der drei folgenden Kriterien erreicht wird: Anwenderspezifische Berechnungszeit wurde erreicht, der stationäre Zustand wurde erreicht oder die Berechnung wurde in Folge eines Fehlers abgebrochen. In der nachstehenden Übersicht sind diese Schritte zusammengefasst [Oda04].

Abbildung 3-2: Abläufe während einer TRACE Berechnung [Oda04]

Während der Berechnung der Lösung werden die Ausgabedateien geschrieben und ständig aktualisiert. Durch die "Restart" Fähigkeit von TRACE können auch transiente Abläufe im Anschluss an einem stationären Zustand simuliert werden. Das heißt, dass für einen gewünschten Betriebszustand (z.B. 100 % Leistung) eine Berechnung durchgeführt wird. Je nach Wahl der Konvergenzkriterien stellt sich nach einer bestimmten Zeit ein stationärer Zustand ein. Durch ein unvorhergesehenes Ereignis (Kühlmittelverlust, Steuerstabbewegungen, ...) wird aus dem stationären Zustand ein instationärer Zustand. Um für diesen Zustand keine gesonderte Eingabedatei zu schreiben, genügt es, eine kleine Datei zu entwickeln, die nur den Ablauf der Transiente wiedergibt. Diese Datei hat ihren zeitlichen Startpunkt direkt im Anschluss an die stationäre Berechnung. Die Abbildung 3-3 gibt einen schematischen Überblick über die Möglichkeit des "Restart" wieder [Oda04]. In dieser Abbildung tauchen Bezeichnungen wie tracin oder tracrst auf. Der erste Teil dieser Begriffe (trac-) bezeichnet das Programm TRACE. Die Endungen geben den Typ der Datei an, zu sehen in Tabelle 3-1.

Endung	Bezeichnung	
in	Eingabe Datei	
msg	msg Gibt die wichtigsten Parameter der Berechnung wieder	
dmp	dmp Beinhaltet die Information die für einen Restart benötigt werden	
xt∨	Datei zur grafischen Ausgabe	
rst	Bezeichnet die Restart Datei	
out	Ausgabe Datei	

Abbildung 3-3: Zyklus einer TRACE Simulation [Oda04]

3.2 Anwendungsbereiche

TRACE kann sowohl das stationäres als auch das instationäre Verhalten des Kernreaktors und der gesamten Anlage (PKL + SKL) nachbilden. Die nachstehende Auflistung gibt einen Überblick über mögliche Zustände bzw. Ereignisse die durch TRACE modelliert werden können.

- Durchdringung des Ringraumes in Folge von Noteinspeisung mit Auftreten von Gegenströmungseffekten,
- Einfluss der Rückwirkungskoeffizienten auf die Reaktordynamik,
- Fluten des Kernes von oben und von unten,
- Wiederauffüllen des unteren Plenums mit Auftreten von Phasentrennungen,
- Mehrdimensionale Strömungsstrukturierung in Bereichen des Kernes und der Plena,
- Metall-Wasser-Reaktionen,
- Kritisches Ausströmen,

- Einfluss nichtkondensierbarer Gase auf Verdampfungs- und Kondensationsprozesse,
- etc.

3.3 TRACE Komponenten

Durch die Darstellung der einzelnen TRACE Bausteine erhält man eine Vorstellung von den umfangreichen Anwendungsmöglichkeiten. Diese Elemente entsprechen zum größten Teil realen Bauteilen [Oda04].

BREAK Komponente:

Die BREAK Komponente wird für die Definition von Randbedingungen benötigt. Die Aufgaben 1 und 2 des Benchmarks sehen nur die Simulation des Reaktordruckbehälters vor. Aus diesem Grund muss der restliche Kreislauf getreu den physikalischen Begebenheiten ersetzt werden. Mit Hilfe der BREAK Komponente werden so die Druckbedingungen definiert, die am Reaktoraustritt herrschen.

CHAN Komponente:

Diese Komponente ist für die Beschreibung von Brennelementen in Siedewasserreaktoren zuständig.

CONTAN Komponente:

CONTAN erlaubt die Beschreibung des Containments.

EXTERIOR Komponente:

Wird für die Kopplung eines TRACE Modells mit Verbindung zu einer CONTAN Komponente benötigt.

FILL Komponente:

Die FILL Komponente dient, wie die BREAK Komponente, zur Beschreibung von Randbedingungen. Mittels FILL können Anfangswerte für Druck, Temperatur, Massenstrom etc. vorgegeben werden.

HEATR Komponente:

Dient zur Beschreibung eines Speisewasserwärmeübertragers.

HTSTR Komponente:

Dienen zur Beschreibung von Strukturen mit oder ohne Wärmequelle. Brennstäbe oder Wärmeübertragerrohre können z.B. damit beschrieben werden.

JETP Komponente:

Mit dieser Komponente werden die Hauptumwälzpumpen in einen SWR simuliert.

PIPE Komponente:

Das Beschreiben von Rohrleitungen ist mit der PIPE Komponente möglich.

PLENUM Komponente:

Die PLENUM Komponente kann als eine Art Sammler interpretiert werden, da es die Möglichkeit bietet, mehrere Anschlüsse zu realisieren. Als ein Verteiler oder ein Knotenpunkt kann dieses Element ebenfalls zum Einsatz kommen.

POWER Komponente:

Die POWER Komponente koppelt die HTSTR Komponenten und erlaubt die Eingabe spezifischer Leistungsmerkmale des Kernkraftwerkes (Leistungsverteilung, Abbrand etc.).

PRIZER Komponente:

Dient zu Modellierung eins Druckhalters in einen DWR.

PUMP Komponente:

Mit dieser Komponente werden Pumpen beschrieben.

RADENC Komponente:

Die RADENC Komponente wird zur Simulierung von thermischer Strahlung verwendet.

SEPD Komponente:

Beschreibt den Dampfabscheider in einen Siedewasserreaktor.

TEE Komponente:

Verzweigte Rohrleitungen werden mit Hilfe der TEE Komponente beschrieben.

VALVE Komponente:

Mit der VALVE Komponente werden Ventile beschrieben.

VESSEL Komponente:

Diese Komponente dient zur Beschreibung des RDB und ist als einzige Komponente 3-dimensional darstellbar.

Durch die Kombination der unterschiedlichen Komponenten ist es möglich, ein Kernkraftwerk mit allen peripheren Einrichtungen zu simulieren. So kann mit Hilfe von PIPE und TEE Komponenten das weitläufige und verzweigt Rohrleitungssystem nachgebildet werden. Dies ist besonders im Hinblick auf das zeitliche Verhalten so wie für die Ermittlung von Druckverlusten relevant. Die VESSEL Komponente kann neben der Beschreibung des RDB auch zur Beschreibung von einen Wasserreservoir, wie dem Speisewasserbehälter, benutzt werden. Dampferzeuger werden durch eine Kombination von PIPE und HTSTR Komponenten beschrieben. Es können aber auch andere Anlagen beschrieben werden, wie zum Beispiel Versuchsstände zur Beschreibung ausgewählter thermohydraulischer Phänomene, da diese Komponenten universell einsetzbar sind.

Zur Kopplung der einzelnen Komponenten dienen "JUNCTIONS". Mit ihnen wird z.B. das Ende einer Rohrleitung (PIPE) an den Reaktordruckbehälter (VESSEL) angeschlossen.

Alle verwendeten Ergebnisse wurden mit der TRACE Version V 4.160 angefertigt.

3.4 Thermohydraulische Modellierung

Die Formulierungen der in TRACE hinterlegten fluiddynamischen Gleichungen basieren auf einem mehrdimensionalen, zweiphasigen Strömungsmodell [Oda04]. Dieses Modell enthält Erhaltungsgleichungen für Masse, Impuls und Energie jeweils für die flüssige und gasförmige Phase. Die Gasphase besteht aus einer Mischung von Wasserdampf und nichtkondensierbaren Gasen welche sich im thermischen und mechanischen Gleichgewicht befinden [Spo00]. Somit besteht das System aus 6 Gleichungen, welche durch konstitutive Gleichungen ergänzt werden.

3.4.1 Erhaltungsgleichungen

Mittels einer Massenstromdichten-Bilanz werden die Massenerhaltungsgleichungen dargestellt. Die flüssige Phase wird mittels Gleichung (3.1), die gasförmige Phase mittels Gleichung (3.2) beschrieben.

$$\frac{\partial}{\partial t} [(1-a)r_1] + \nabla [(1-a)r_1 \cdot v_1] = -G$$
(3.1)
(3.1)
(3.1)

- 30 -

Zu (1): Zeitliche Änderung der Masse im betrachteten Volumen

- Zu (2): Änderung der räumlichen Verteilung der Masse
- Zu (3): Massenstromdichte

TRACE enthält außerdem eine Massenerhaltungsgleichung die in Wasser gelöste Stoffe (Bor) berücksichtigt. Dabei wird angenommen, dass die gelösten Stoffe die Thermohydraulik nicht direkt beeinflussen.

Die folgenden zwei Gleichungen beschreiben die Impulserhaltung der flüssigen und gasförmigen Phase.

$$1 \qquad 2 \qquad 3 \qquad 4$$

$$\frac{\partial}{\partial t} v_{1} + v_{1} \cdot \nabla v_{1} = -\frac{1}{r_{1}} \cdot \nabla p + \frac{c_{i}}{(1-a)} (v_{g} - v_{1}) |v_{g} - v_{1}|$$

$$-\frac{G^{-}}{(1-a)r_{1}} (v_{g} - v_{1}) - \frac{c_{wl}}{(1-a)r_{1}} v_{1} |v_{1}| + g$$

$$(3.3)$$

$$1 \qquad 2 \qquad 3 \qquad 4$$

$$-\frac{\partial v_{g}}{\partial t} + v_{g} \cdot \nabla v_{g} = -\frac{1}{r_{v}} \nabla p - \frac{c_{i}}{a+r_{v}} (v_{g} - v_{1}) |v_{g} - v_{1}|$$

$$\frac{\partial \mathbf{t}}{\partial \mathbf{t}} = \mathbf{r}_{g} + \mathbf{r}_{g} +$$

- Zu (1): Zeitliche Änderung der Geschwindigkeit
- Zu (2): Änderung der räumlichen Geschwindigkeitsverteilung
- Zu (3): Räumliche Druckverteilung
- Zu (4): Zwischenphasenreibung
- Zu (5): Änderung der Massenverteilung
- Zu (6): Reibung zwischen Wand und Medium
- Zu (7): Gravimetrischer Anteil

Zur Bilanzierung der Energie wird die thermische Energiegleichung verwendet. Gleichung (3.5) beschreibt sowohl flüssige als auch gasförmige Phase, wohingegen Gleichung (3.6) nur die Gasphase darstellt.

- Zu (1): Zeitliche Änderung der inneren Energie
- Zu (2): Räumliche Änderung der inneren Energie
- Zu (3): Druckänderungsgeschwindigkeit
- Zu (4): Wärmetransfer von Wand an flüssige Phase
- Zu (5): Wärmetransfer von Wand an gasförmige Phase

- Zu (6): Wärmezufuhr durch Strahlung an die flüssige Phase
- Zu (7): Wärmezufuhr durch Strahlung an die gasförmige Phase
- Zu (8): Fühlbare Wärme
- Zu (9): Wärmetransfer zwischen Gas- und Flüssigphase
- Zu (10): Anteil der umgewandelten Masse (Dampf-Flüssigkeit; Flüssigkeit-Dampf)

Bei näherem Studium der sechs Gleichungssysteme fällt auf, dass diese Systeme insgesamt mehr als 6 unbekannte Größen aufweisen. Neben solchen Parametern wie Druck, Temperatur oder Massendampfanteil, ist auch eine Vielzahl von Parametern in den Gleichungen enthalten, die im ersten Moment unbekannt sind, die aber benötigt werden um die Gleichungssysteme zu lösen. Um diese zu bestimmen werden weiter Gleichungen benötigt, die die Zahl der unbekannten Variablen soweit reduzieren, dass eine geschlossene Lösung der Gleichungssysteme möglich ist. Man spricht dabei von Schließungs- bzw. konstitutiven Gleichungen.

3.4.2 Konstitutive Gleichungen

Um für die mathematische Stabilität der Gleichungssysteme zu sorgen, müssen die Unbekannten, z.B. die Wärmestromdichten in den Energieerhaltungsgleichungen, durch physikalische Betrachtungen ermittelt werden. Zum Teil bestehen diese neuen Gleichungen aus Korrelationen die anhand von Experimenten ermittelt wurden. Mit Hilfe der Wärmestromdichte soll kurz erläutert werden, wie solche Korrelationen ermittelt werden.

Ausgangspunkt ist folgende einfache Beziehung:

$$q = a \cdot DT \tag{3.7}$$

Hierbei ist ΔT die Temperaturdifferenz und α symbolisiert den Wärmeübergangskoeffizienten. Dieser Koeffizient wird durch unterschiedliche Korrelationen, je nach Art des Wärmeübergangs ermittelt [Bro95].

In Abbildung 3-4 sind die Strömungsformen in einen senkrechten Kühlkanal dargestellt und in Abbildung 3-5 ist der Verlauf der Wärmequelldichte in Abhängigkeit von der Oberflächentemperatur dargestellt. Beide Abbildungen weisen deutliche Veränderlichkeiten auf. Diese veränderlichen Bedingungen sorgen dafür, dass für den Koeffizienten in Gleichung (3.7) unterschiedliche Korrelationen gelten können.

Abbildung 3-4: Strömungsformen in einen vertikalen Strömungskanal [Cur90; Ish75; Spo00,]^{1,2}

¹ Grau: Wasser; Weiß: Wasserdampf.

² Links: hoher Massendurchsatz; Rechts: geringer Massendurchsatz.

Abbildung 3-5: Schematische Darstellung der Wärmeübergangsbereiche [Bro95; San03; Tom89;]

In Abhängigkeit von der Durchflussmenge und vom Void-Anteil wurde ein Schema, wie in Abbildung 3-6, erstellt mit welchen sich die Strömungsformen, welche für die Koeffizienten von Relevanz sind, einteilen lassen.

Abbildung 3-6: Strömungsregime in Abhängigkeit von der Durchflussmenge und vom Void-Anteil [Spo00; Cur90]

Diese ermittelten Korrelationen bilden das Gerüst, welches für die mathematische Stabilität sorgt. Eine Übersicht über die Gleichungen und Korrelationen die nötig sind um die Gleichungssysteme zu lösen, sind in den Abbildung 3-7 bis Abbildung 3-9 zu finden [Spo00].

Abbildung 3-7: Konstitutive Gleichungen für die Massenerhaltung [Spo00]

Abbildung 3-8: Konstitutive Gleichungen für den Impulserhalt [Spo00]

Abbildung 3-9: Konstitutive Gleichungen zur Energieerhaltung [Spo00]

Die komplette Auflistung aller Gleichungen ist an dieser Stelle nicht möglich, in den vorstehenden Abbildungen ist jedoch eine Literaturstellen benannt [Spo00], die eine umfangreichere Darstellung liefert.

4 Das Programmsystem PARCS

4.1 Aufbau und Struktur

PARCS – Purdue Advanced Reactor Core Simulator – ist ein Neutronenkinetik-Code der von der Purdue University im Auftrag der NRC entwickelt wurde. PARCS erlaubt die Lösung von zeitabhängigen, 2-Gruppen Diffusionsgleichungen in 3 dimensionalen Räumen [Joo02]. PARCS kann sowohl auf quadratische, als auch auf hexagonale Brennelemente angewandt werden. Hierfür wurden zwei Methoden bzw. Solver für PARCS entwickelt:

_	quadratische Anordnung:	Nodal Expansion Method (NEM) bzw. Analytic No-
		dal Method (ANM)
_	hexagonale Anordnung:	Triangular Polynomial Expansion Method (TPEN).

4.2 Anwendungsbereiche

Die Hauptanwendung von PARCS liegt in der mehrdimensionalen neutronenphysikalischen Berechnung des Verhaltens von Reaktoren bei Betriebstransienten oder unterstellten Störfällen wie Reaktivitätsstörfällen (RIA), ATWS-Störfällen, Unterkühlungstransienten, Debohrierungsstörfällen, etc. PARCS besitzt die Fähigkeiten unter anderem folgende Phänomene zu beschreiben.

- Berechnung von Eigenwert Problemen Ermittlung von k_{eff} und der kritischen Borkonzentration,
- Berechnung von Reaktorkinetischen Vorgängen,
- Berücksichtigung des Xenon/Samarium-Verhaltens,
- Modellierung der Zerfallswärmeleistung.

Zusätzlich verfügt PARCS über eigene Thermohydraulik-Modelle mit eingeschränkter Anwendung. Daher bietet sich eine Kopplung mit TRACE oder RELAP an.

4.3 Grundmodelle

Grundlage für die Ermittlung der Neutronenflussdichte ist die Lösung der Neutronentransportgleichung, wie sie Gleichung (4.1) darstellt [Mer04; Bel70].

Anhand von Gleichung (4.1) zeigt sich, dass die Neutronentransportgleichung vier Abhängigkeiten aufweist [Mer04]. Diese vier Abhängigkeiten werden kurz erläutert.

- Bewegungsrichtung: Unter Verwendung von Legendreschen Polynomen wird die Abhängigkeit der Transportgleichung vom Raumwinkel Ω in so genannten P_N-Gleichungen beschrieben [Mer04].
- Geschwindigkeit: In PARCS wird die zeitabhängige Mehrgruppen-Transportgleichung gelöst. Die erste Gruppe beinhaltet die thermischen Neutronen, die zweite Gruppe umfasst den schnellen Bereich [Mer04].

Raum-Koordinate: PARCS besitzt die Fähigkeit hexagonale BE-Strukturen zu berechnen. Hierfür wird *Triangle-based Polynomial Expansion Nodal Method* (TPEN-Methode) verwendet. Hierbei entstehen zwei Diffusionsgleichungen, eine für die axiale und eine für die radiale Richtung. In der radialen Richtung wird das Hexagon in sechs gleichgroße Dreiecke zerlegt. Im Anschluss wird eine Polynomentwicklung für die Ermittlung des Neutronenflusses für jedes Dreieck durchgeführt [Dow04; Joo01].

Abbildung 4-1: Geometrie und Randbedingungen für die TPEN-Methode [Dow04]

Die Zeit wird mit Hilfe der Theta-Methode diskretisiert. Die Diskretisierung kann somit explizit als auch implizit durchgeführt werden [Mer04; Joo02; Smi79].

4.4 Methodik zur Kopplung von PARCS mit TRACE

Zeit:

Damit Rückwirkungseffekte zwischen der Neutronik und der Thermohydraulik beschrieben werden können, müssen die relevanten Daten zwischen PARCS und TRACE durch eine geeignete Kopplung ausgetauscht werden. Um dies zu realisieren, werden die beiden Programme mittels der Software PVM aneinandergekoppelt. PVM ist die Abkürzung für Parallel Virtual Machine und wurde im Sommer 1989 am Oak Ridge National Laboratory entwickelt [Gei94]. Hauptsächlich wurde PVM zu Kopplung mehrerer separater Computer zu einer Einheit benutzt, um so die Rechenund Speicherkapazitäten zu erhöhen. PVM kann aber auch dafür eingesetzt werden, zwei unabhängige Computerprogramme auf einem Rechner zu koppeln [lva06c]. Für die Kopplung gibt es zwei Varianten. Zum einen können Programme durch eine interne Kopplung (Abbildung 4-2 oben) verbunden werden. Diese Methode wurde im Rahmen dieser Arbeit angewandt. Bei dieser Art existieren zwei Kernmodelle (eines für TRACE und eines für PARCS). Im TRACE-Modell werden die Thermohydraulik und die Wärmeleitung berechnet. Das PARCS-Modell ermittelt die Neutronik. Dabei kommt es zum Informationsaustausch zwischen diesen beiden Codes. Je nach thermodynamischen und strömungstechnischen Bedingungen werden Werte für die Moderator- oder die Brennstofftemperatur ermittelt. Diese werden an PARCS übergeben und es wird ein Neutronenfluss bzw. eine Leistung berechnet. Diese Werte werden wieder zu TRACE gesendet, womit dann neue Werte für die Thermohydraulik berechnet werden. Dieser Austausch findet zwischen allen korrespondierenden Zellen gemäß einem Mapping-Schema statt. Eine andere Möglichkeit der Kopplung ist die externe Kopplung (Abbildung 4-2 unten). PARCS verfügt über ein einfaches Modell zur Berechnung der thermohydraulischen Bedingungen. Dadurch kann der ganze Kern durch ein PARCS-Modell repräsentiert werden. Bei dieser Kopplung würde TRACE am oberen und am unteren Ende des Kernes angekoppelt. TRACE liefert dabei die Bedingungen die am Reaktoreintritt bzw. –austritt herrschen.

Abbildung 4-2: Datenaustausch für die verschiedenen Möglichkeiten einer Kopplung [Iva06c

Da das thermohydraulische Modell von PARCS geringeren Ansprüchen als dem TRACE-Modell genügt, sind die damit erzielten Ergebnisse weniger aussagekräftig¹. Neben TRACE und PARCS können auch andere Programme mit PVM gekoppelt werden. Bei einer Kopplung eines CFD Codes mit einen Systemcode wie RELAP oder TRACE bittet sich eine externe Kopplung an, da CFD Codes sehr detaillierte Nachbildungen des Reaktordruckbehälters erlauben. Somit könnten 3D-Phänomene im Kern noch genauer aufgelöst werden.

Die Kopplung der Programme erfolgt unter der Verwendung der PVM Version 3.4. In der neuesten Version von TRACE (Version 5) ist PARCS vollständig integriert.

¹ Keine 3D-Modellation möglich.

5 Entwicklung eines 3D-Kernmodells für den Reaktordruckbehälter

Der Systemcode TRACE, sowie auch PARCS, benötigt für die Berechnung genaue geometrische Vorgaben des zu berechnenden Reaktors. Bei PARCS bezieht sich die Geometrie ausschließlich auf die aktive Zone. TRACE jedoch benötigt Angaben für den kompletten Reaktordruckbehälter. Anhand der geometrischen Daten der Anlage kann ein TRACE spezifisches Modell entwickelt werden. Die Herangehensweise zur Entwicklung des Modells ist Gegenstand dieses Kapitels.

5.1 Thermohydraulische Modellierung des RDB

Mit der Vessel Komponente kann der Reaktordruckbehälter am besten beschrieben werden, da diese Komponente die Möglichkeit einer 3D-Darstellung besitzt. Dadurch muss der RDB neben der axialen (z-Richtung) und radialen Richtung (xr-Richtung) auch in einer dritten Richtung, der azimutalen Richtung (yt-Richtung) beschrieben werden. Diese Richtung spiegelt die Unterteilung in Ringsegmente wieder. Abbildung 5-1 zeigt ein Beispiel für eine Unterteilung in Ringe und Segmente.

Abbildung 5-1: Beispiel für die Nodalisierung eines RDB [Oda04]

Nach dieser Vorlage muss auch der in Abbildung 5-2 dargestellte RDB des WWER-1000 unterteilt werden.

Abbildung 5-2: Schnittbild des WWER 1000 RDB

Dafür ist es notwendig, sich darüber Gedanken zu machen, wie diese Unterteilung zu erfolgen hat. In Abbildung 5-3 ist die Nomenklatur einer einzelnen 3D-Zelle zu erkennen, welche leicht in Abbildung 5-1 wieder gefunden werden kann.

Abbildung 5-3: 3D-Zelle

Diese Einteilung ist wichtig, da für die Flächen (1), (2) und (3), spezifische Parameter ermittelt werden müssen, um die Zelle zu bilanzieren. Dabei ist Fläche (1) der yt- oder θ -Richtung, Fläche (2) der z-Richtung und Fläche (3) der xr-Richtung zugeordnet.

Diese folgenden Parameter müssen für die Zelle bzw. für die Flächen der Zelle ermittelt werden:

- 1. Anteil des flüssigen Volumens,
- 2. Anteil des flüssigen Strömungsquerschnittes in yt-Richtung,
- 3. Anteil des flüssigen Strömungsquerschnittes in z-Richtung,
- 4. Anteil des flüssigen Strömungsquerschnittes in xr-Richtung,
- 5. Hydraulischer Durchmesser in yt-Richtung,
- 6. Hydraulischer Durchmesser in z-Richtung,
- 7. Hydraulischer Durchmesser in xr-Richtung.

Gegebenenfalls müssen noch zusätzliche Reibungsverluste berechnet werden. Zu den weiteren Eingaben gehören Angaben zu Druck, Temperatur und Geschwindigkeit in den einzelnen Zellen. Diese Werte beziehen sich nur auf die Anfangsbedingungen.

5.1.1 Axiale Nodalisierung

Dadurch, dass es z.Z. noch wenig Erfahrung mit dem neuen Programm TRACE gibt, gibt es auch wenig bzw. keine Vergleichsmöglichkeit mit anderen Reaktoren oder anderen Anwendern. Für die Nodalisierung in axialer (wie auch in radialer und azimutale) Richtung existieren verschiedene Ansätze. So können die einzelnen Levels die gleiche axiale Ausdehnung besitzen, z.B. 0.5 m. Dadurch kann es aber dazu kommen, dass es in einem Level zu vielen Querschnittsänderungen kommt. Da die Fläche in z-Richtung nur am oberen Ende der Zelle beschrieben wird, können diese Querschnittsänderungen nicht vollständig dargestellt werden. Des Weiteren birgt diese Unterteilung die Gefahr der erhöhten Fehlerproduktion. Viele Änderungen von Volumen und Querschnittsflächen erfordern ein hohes Maß an Umsicht. Trotzdem ist es möglich einige dieser Änderungen zu übersehen. Denn um die Parameter zu berechnen, die oben aufgelistet worden, ist es unumgänglich auch andere Werte zu berechen, wie z.B. Gesamtflächen, Gesamtvolumen, Volumen der Festkörper etc. Aus diesem Grund wird in dieser Anwendung die axiale Unterteilung unter das Credo der Homogenität gestellt. Alle Levels, soweit dies möglich ist, besitzen konstante Bedingungen. So stellt z.B. die untere Kerntrageplatte, ein axiales Level da. Diese Unterteilung hat den Vorteil, dass Querschnitts- und Volumenänderungen erfasst werden können. Auch ist die Berechnung der einzelnen Levels leichter, da diese über konstante Bedingungen verfügen. Nachteile dieser Methode sind zum einen die mögliche höhere Anzahl an axialen Levels, im Gegensatz zu einer Unterteilung mit 0,1 m Schrittweite besitzt diese Unterteilung aber weniger Levels. Ein weiter Nachteil liegt im Programm TRACE selber, da bei starker Änderung der axialen Unterteilung die Rechenzeit steigt. Die nachstehende Abbildung zeigt den WWER-1000 und seine axiale Unterteilung. Wie zu erkennen ist, ergeben sich 30 axiale Levels.

Abbildung 5-4: Axiale Unterteilung des RDB

Die Tabelle 5-1 gibt Abmessungen und Bemerkungen zu den einzelnen Levels wieder.

	Höhe [m]		Bomorkungon
Levei		gesamt	Demerkungen
30	1,1730	12,5260	Deckel-Bereich
29	0.6070	11 2520	Oberer Bereich zw. oberer Plenumplatte und
	0,0370	11,5550	Deckel-Bereich
28	0 6000	10 6560	Unterer Bereich zw. oberer Plenumplatte und
20	0,0000	10,0000	Deckel-Bereich
27	0,2000	10,0560	Obere Plenumplatte
26	0.6245	9 8560	Bereich zw. Kühlmittel-Austritt und oberer Ple-
20	0,0240	3,0000	numplatte
25	0,8500	7,4310	Kühlmittel-Austritt
24	0 4753	8 3815	Oberer Bereich zw. Kühlmittel-Eintritt und Aus-
21	0,1100	0,0010	tritt
23	0 4753	7 9063	Unterer Bereich zw. Kühlmittel-Eintritt und
	0,1100	-,	Austritt
22	0,8500	7,4310	Kühlmittel-Eintritt
21	0.2660	6.5810	Bereich zw. Obere Kerntrageplatte und Kühl-
	0,2000	0.0450	mittel-Eintritt
20	0,2650	6,3150	Obere Kerntrageplatte
19	0,1990	6,0500	BE-Kopf, perforierter zylindrischer Teil
18	0,1990	5,8510	BE-Kopf, konischer Teil
17	0,2490	5,6520	Unbeheizter Kern, axialer Reflektor
16	0,3550	5,4030	
15	0,3550	5,0480	
14	0,3550	4,6930	
13	0,3550	4,3380	-
12	0,3550	3,9830	Aktive Zone, Gesamthöhe 3 550 m
11	0,3550	3,6280	
10	0,3550	3,2730	
9	0,3550	2,9180	
8	0,3550	2,5630	
7	0,3550	2,2080	
6	0,2230	1,8530	Unbeheizter Kern, axialer Reflektor
5	0,1000	1,6300	Untere Kerntrageplatte
4	0,6520	1,5300	Perforierte Unterstützungssäulen
3	0,6470	0,8750	Untere BE Unterstützungssäulen
2	0,1200	0,2310	Perforierter Kernbehälterboden
1	0,1110	0,1110	Raum zw. RDB- und Kernbehälterboden

Tabelle 5-1: Axiale Einteilung

5.1.2 Azimutale Nodalisierung

Die Anordnung der Loops hat Einfluss auf die azimutale Nodalisierung. Für eine symmetrische, mit einer 90° versetzten Anordnung der Loops, bietet sich eine Sektorenunterteilung mit dem Vielfachen von 4 an. Abbildung 5-5 zeigt solche Unterteilungen mit 4; 8 bzw. 16 Sektoren.

Abbildung 5-5: Unterteilung in 4; 8 und 16 Sektoren

Solch eine Unterteilung ist für den WWER-1000 nicht geeignet. Hierfür kommt eine Unterteilung mit dem Vielfachen von 6 in Frage, da dies am ehesten der Darstellung

in Abbildung 2-12 entspricht. Diese Art der Unterteilung spiegelt Abbildung 5-6 wieder.

Abbildung 5-6: Unterteilung in 6; 12 und 18 Sektoren
Aufgrund der Tatsache, dass die Loops unsymmetrischen angeordnet sind (siehe Abbildung 2-12), spricht vieles für eine noch feinere Unterteilung der Sektoren. Dies wird aber durch die Abmessungen der Kühlmittelstutzen unterbunden. Die Anschlüsse besitzen einen Innendurchmesser von 850 mm. Aus diesem Grund muss die Bedingung

$$\frac{U}{S} \ge 850 \, \text{mm} \tag{5.1}$$

erfüllt sein. Hierbei entspricht U dem Umfang des RDB und S ist die Anzahl der Sektoren. 15 Sektoren wären demnach das Maximum der Unterteilung. Der Grund für diese Bedingung ist in TRACE zu suchen, da die Anschlüsse der heißen und kalten Stränge einer bestimmten Zelle des RDB zugeordnet sind. Überschneidungen sind nicht möglich.

Für das Modell wurde eine Unterteilung in sechs Sektoren vorgenommen, da dies eine Standardunterteilung ist, welche von den anderen Teilnehmern des VVER-1000 Coolant Transient Benchmarks ebenfalls angewandt wird. Somit können die Werte der einzelnen Teilnehmer besser verglichen werden, als wenn unterschiedliche Sektorenunterteilungen vorgenommen wurden.

Abbildung 5-7: Azimutale Unterteilung

Da die Anschlüsse der Leitungen mittig an den Zellen der VESSEL Komponente angebracht werden, betragen die Winkel 30; 150; 210 und 330° ausgehend von Sektorgrenzfläche 3-4.

5.1.3 Radiale Nodalisierung

Die radiale Unterteilung kann, wie die axiale Unterteilung, in gleiche radiale Abstände oder in frei definierte Abschnitte erfolgen. Abbildung 5-8 zeigt einen Schnitt durch den Reaktordruckbehälter. Anhand dieser Darstellung kann sich ein Bild über eine mögliche radiale Unterteilung gemacht werden. Der äußerste Ring ist dem Ringraum vorbehalten. Die zwei folgenden Ringe gelten der Kerntonne und dem Reflektor. Die aktive Zone des Reaktors wird mit drei Ringen berücksichtigt.

Abbildung 5-8: Schnitt durch den Reaktor (rechts: Höhe Kühlmittel-Eintritt - links: Höhe Kühlmittel-Austritt) [Koe04]

Die Tatsache, dass es sich um den inneren Ring in Wirklichkeit um einen Zylinder handelt, wird hier nicht berücksichtigt. Um Missverständen vorzubeugen, wird die Bezeichnung "Ring" weitergeführt.

Die Radien der beiden äußeren Ringe lassen sich unter Einbeziehung von [Koe04] ermitteln, da es sich hierbei um vorgegebene geometrische Daten handelt. Für die

Ermittlung der anderen Radien mussten Berechnungen durchgeführt werden, die nachfolgend erläutert werden.

In Abbildung 5-9 sind die 163 Brennelemente (weiß) und die Reflektorelemente (grau) dargestellt.

Abbildung 5-9: Hexagonale Kernstruktur [Koe04]

Wie bereits oben erwähnt, sind die aktive Zone in drei, und der Reflektor in einen Ring unterteilt. Aufgrund der hexagonalen Anordnung der Brennelemente muss ein äquivalenter Radius definiert werden, da die Brennstäbe bei einer kreisförmigen Anordnung einen anderen Raum im Kern einnehmen als in der hexagonalen Struktur. Abbildung 5-10 zeigt drei symmetrische Hexagone. Die Schlüsselweite eines Hexagons beträgt 236 mm. Mit folgender Gleichung kann nun die Fläche des Hexagons ermittelt werden.

$$A_{n} = \frac{n}{2} \cdot r^{2} \cdot \sin\left(\frac{2 \cdot p}{n}\right)$$
(5.2)

Darin ist A_n die Fläche des Hexagons, n die Anzahl der Ecken und r der Radius eines Kreises, der das Hexagon umgibt. Der Radius wird wie folgt bestimmt:

$$r = \frac{h}{\cos\left(\frac{p}{n}\right)},$$
(5.3)

wobei h das Lot vom Mittelpunkt des Hexagons bis zu einer Segmentsehne darstellt [Göh99]. Somit beträgt dieser Wert 118 mm, was die Hälfte der Schlüsselweite darstellt. Für den Radius ergaben sich 136,3 mm und somit die Fläche zu 48234,15 mm² bzw. 0,0482 m²

Abbildung 5-10: Symmetrisches Hexagon mit einer Schlüsselweite von 236 mm

Mittels dieser Relationen kann nun die Fläche von mehreren Hexagonen berechnet werden und einer äquivalenter Kreisringdurchmesser bestimmt werden. Der erste Ring soll aus 37 Hexagonen bestehen. Ring 2 und Ring 3 haben 54 bzw. 72 Brennelemente. In Summe ergibt dies 163 Brennelemente. In der folgenden Übersicht sind die Berechnungen der drei Ringe aufgeführt (Gleichung (5.4) - (5.9)).

$$A_{1} = \frac{6}{2} \cdot \left(\frac{0,1180 \,\mathrm{m}}{\cos\left(\frac{p}{6}\right)}\right)^{2} \cdot \sin\left(\frac{2 \cdot p}{6}\right) \cdot 37 = 1,7847 \,\mathrm{m}^{2} = A_{1}^{\mathrm{äqui}} = p \cdot \mathrm{r}_{1}^{2}$$
(5.4)

$$r_1 = \sqrt{\frac{A_1^{aqui}}{p}} = \sqrt{\frac{1,7847 \,\mathrm{m}^2}{p}} = 0,7537 \,\mathrm{m}$$
 (5.5)

$$A_{2} = \frac{6}{2} \cdot \left(\frac{0,1180 \,\mathrm{m}}{\cos\left(\frac{p}{6}\right)} \right)^{2} \cdot \sin\left(\frac{2 \cdot p}{6}\right) \cdot 54 = 2,6046 \,\mathrm{m}^{2} = A_{2}^{\mathrm{äqui}} = p \cdot \left(r_{2}^{2} - r_{1}^{2}\right)$$
(5.6)

$$r_{2} = \sqrt{\left(\frac{A_{2}^{\text{äqui}}}{p}\right) + r_{1}^{2}} = \sqrt{\frac{2,6046 \,\text{m}^{2}}{p} + (0,7537 \,\text{m})^{2}} = 1,1820 \,\text{m}$$
(5.7)

$$A_{2} = \frac{6}{2} \cdot \left(\frac{0,1180 \,\mathrm{m}}{\cos\left(\frac{p}{6}\right)}\right)^{2} \cdot \sin\left(\frac{2 \cdot p}{6}\right) \cdot 72 = 3,4729 \,\mathrm{m}^{2} = A_{3}^{\mathrm{äqui}} = p \cdot \left(r_{3}^{2} - r_{2}^{2}\right)$$
(5.8)

$$r_{3} = \sqrt{\left(\frac{A_{3}^{äqui}}{p}\right) + r_{2}^{2}} = \sqrt{\frac{3,4729 \,\text{m}^{2}}{p}} + (1,1820 \,\text{m})^{2} = 1,5820 \,\text{m}$$
(5.9)

Die komplette Unterteilung des Kernes ist in Abbildung 5-11 zu sehen.

Abbildung 5-11: Radiale Unterteilung und Abmessungen des Kernes

Um die sieben Parameter zu ermitteln, sind weitreichende Berechnungen nötig, die am Beispiel des axialen Levels 7 (siehe Abbildung 5-12) durchgeführt werden. Level 7 ist der unterste Teil der aktiven Zone. Die Berechnungen für die anderen Levels der aktiven Zone sind identisch. Für die restlichen Levels erfolgt die Berechnung in analoger weise.

Abbildung 5-12: Radiale Unterteilung des axialen Levels 7

5.1.4 Anteil des flüssigen Volumens

Die Zellen der inneren Ringe des Levels 7 sind von Brennelementen durchsetzt. Dieser volumetrische Anteil muss in der Ermittlung des flüssigen Volumenanteils der Zellen berücksichtig werden. Wie in den oberen Berechnungen angeführt, besteht der erste Ring aus 37 Brennelementen. Bei 6 Sektoren pro Ring bedeutet dies, dass sich in jeden Sektor ca. 6,17 Brennelemente befinden. Jedes Brennelement besteht neben den 312 Brennstäben noch zusätzlich aus einem Wasserrohr und mehreren Kontrollstabführungsrohren. Somit beläuft sich die Summe der Strukturen in einen Brennelement auf 331. Damit beträgt die Gesamtanzahl der Brennstäbe und Führungsrohre ca. 2041 pro Sektor. In der Abbildung 5-13 ist ein Sektor dargestellt. Die rot gefärbten Elemente repräsentieren die Brennelemente. Diese Strukturen bilden den Festkörperanteil der Zellen. Die Bereiche die ungefärbt sind, sind vom Kühlmittel belegt.

Abbildung 5-13: 3D-Darstellung eines axialen Sektors

Mit diesen einführenden Überlegungen, den Werten die unter 5.1.3 ermittelt wurden und der vorstehenden Abbildung, kann nun die eigentliche Berechnung der Parameter erfolgen.

$$V_{\text{Gesamt 1}} = \frac{p \cdot r_1^2}{S} \cdot h_z = \frac{p \cdot (0,7537 \,\text{m})^2}{6} \cdot 0,3550 \,\text{m} = 0,1056 \,\text{m}^3$$
(5.10)

$$V_{\text{Fest 1}} = \frac{B_1}{S} \cdot N \cdot p \cdot r_{\text{pin}}^2 \cdot h_z = \frac{37}{6} \cdot 331 \cdot p \cdot (0,0046 \,\text{m})^2 \cdot 0,3350 \,\text{m} = 0,0471 \,\text{m}^3$$
(5.11)

$$V_{\text{Flüssig1}} = V_{\text{Gesamt1}} - V_{\text{Fest1}} = 0,1056 \,\text{m}^3 - 0,0471 \,\text{m}^3 = 0,0585 \,\text{m}^3$$
 (5.12)

$$frfvol_{1} = \frac{V_{Flüssig1}}{V_{Gesamt1}} = \frac{0,0585 \,\text{m}^{3}}{0,1056 \,\text{m}^{3}} = 0,5537 \tag{5.13}$$

$$V_{\text{Gesamt 2}} = \frac{p \cdot (r_2^2 - r_1^2)}{S} \cdot h_z = \frac{p \cdot [(1,1820 \text{ m})^2 - (0,7537 \text{ m})^2]}{6} \cdot 0,3550 \text{ m}$$

= 0,1544 m³ (5.14)

$$V_{\text{Fest}2} = \frac{B_2}{S} \cdot N \cdot p \cdot r_{\text{pin}}^2 \cdot h_z = \frac{54}{6} \cdot 331 \cdot p \cdot (0,0046 \,\text{m})^2 \cdot 0,3550 \,\text{m} = 0,0689 \,\text{m}^3$$
(5.15)

$$V_{\text{Flüssig2}} = V_{\text{Gesamt2}} - V_{\text{Fest2}} = 0,1544 \,\text{m}^3 - 0,0689 \,\text{m}^3 = 0,0855 \,\text{m}^3 \tag{5.16}$$

$$frfvol_{2} = \frac{V_{Flüssig2}}{V_{Gesamt2}} = \frac{0,0855 \,\text{m}^{3}}{0,1544 \,\text{m}^{3}} = 0,5537 \tag{5.17}$$

$$V_{\text{Gesamt 3}} = \frac{p \cdot (r_3^2 - r_2^2)}{S} \cdot h_z = \frac{p \cdot [(1,5820 \,\text{m})^2 - (1,1820 \,\text{m})^2]}{6} \cdot 0,3550 \,\text{m}$$

= 0,2052 \, m^3 (5.18)

$$V_{\text{Fest3}} = \frac{B_3}{S} \cdot N \cdot p \cdot r_{\text{pin}}^2 \cdot h_z = \frac{72}{6} \cdot 331 \cdot p \cdot (0,0046 \,\text{m})^2 \cdot 0,3550 \,\text{m} = 0,0916 \,\text{m}^3$$
(5.19)

$$V_{\text{Flüssig}3} = V_{\text{Gesamt}3} - V_{\text{Fest}3} = 0,2052 \,\text{m}^3 - 0,0916 \,\text{m}^3 = 0,1136 \,\text{m}^3 \tag{5.20}$$

$$frfvol_{3} = \frac{V_{Flüssig3}}{V_{Gesamt3}} = \frac{0,1136 \,\text{m}^{3}}{0,2052 \,\text{m}^{3}} = 0,5537 \tag{5.21}$$

Der folgende vierte Ring entspricht dem Reflektor. Die physikalischen Eigenschaften dieses Reflektors werden aber nicht berücksichtigt. Vielmehr dient dieser Ring dazu, einen Massenstrom-Bypass zu realisieren, wie er auch im Normalbetrieb auftritt. Aus diesem Grund ist der Großteil des Rings ein Festkörper. Nur ein kleiner Spalt wurde für den Bypass freigehalten. Solche Vereinfachungen sind notwendig, da eine detailgetreue Nachbildung des ganzen Kernes sehr aufwendig ist. Bei genauerer Betrachtung fällt auf, dass z.B. die Brennstäbe und die Führungsrohe gleiche Abmessungen aufweisen. Für den Normalfall trifft dies nicht zu, dient aber zur Vereinfachung der – 58 -

Berechnung. Des Weiteren sei hier ebenfalls erwähnt, dass die eigentliche Schlüsselweite der Brennelemente 234 mm beträgt. Da aber zwischen den Brennelementen ein Wasserspalt von 2 mm vorliegt, wurde die Schlüsselweite künstlich erhöht, wodurch der Wasserspalt in das Brennelement hineinverlagert wurde. Diese Art der Vereinfachung zieht sich durch das ganze Modell, da ein so grobes Kernmodell (1080 Zellen) keine Details erlaubt. Größere Vereinfachungen sind unter 5.1.12 dargestellt.

$$V_{\text{Gesamt 4}} = \frac{p \cdot (r_4^2 - r_3^2)}{S} \cdot h_z = \frac{p \cdot [(1,7100 \text{ m})^2 - (1,5820 \text{ m})^2]}{6} \cdot 0,3550 \text{ m}$$

= 0,0783 m³ (5.22)

$$V_{\text{Fest 4}} = \frac{p \cdot (r_4^2 - r_{\text{Re flektor}}^2)}{S} \cdot h_z = \frac{p \cdot [(1,7100 \text{ m})^2 - (1,5900 \text{ m})^2]}{6} \cdot 0,3550 \text{ m}$$

= 0,0736 m³ (5.23)

Der Wert r_{Reflektor} beschreibt die Ausdehnung des Bypass.

$$V_{\text{Flüssig4}} = V_{\text{Gesamt4}} - V_{\text{Fest4}} = 0,0783 \,\text{m}^3 - 0,0736 \,\text{m}^3 = 0,0047 \,\text{m}^3 \tag{5.24}$$

$$frfvol_{4} = \frac{V_{Flüssig4}}{V_{Gesamt4}} = \frac{0,0047 \text{ m}^{3}}{0,0783 \text{ m}^{3}} = 0,0602$$
(5.25)

$$V_{\text{Gesamt 5}} = \frac{p \cdot (r_5^2 - r_4^2)}{S} \cdot h_Z = \frac{p \cdot [(1,8100 \text{ m})^2 - (1,7100 \text{ m})^2]}{6} \cdot 0,3550 \text{ m}$$

= 0,0654 m³ (5.26)

$$V_{\text{Fest5}} = \frac{p \cdot (r_5^2 - r_4^2)}{S} \cdot h_z = \frac{p \cdot [(1,8100 \text{ m})^2 - (1,7100 \text{ m})^2]}{6} \cdot 0,3550 \text{ m}$$

= 0,0654 m³ (5.27)

$$V_{\text{Flüssig5}} = V_{\text{Gesamt5}} - V_{\text{Fest5}} = 0,0654 \,\text{m}^3 - 0,0654 \,\text{m}^3 = 0,0000 \,\text{m}^3 \tag{5.28}$$

$$frfvol_{5} = \frac{V_{Flüssig5}}{V_{Gesamt5}} = \frac{0,0000 \,\text{m}^{3}}{0,0654 \,\text{m}^{3}} = 0,0000 \tag{5.29}$$

$$V_{\text{Fest 6}} = \frac{p \cdot (r_6^2 - r_5^2)}{S} \cdot h_Z = \frac{p \cdot [(2,0670 \text{ m})^2 - (1,8100 \text{ m})^2]}{6} \cdot 0,3550 \text{ m}$$

= 0,1852 m³ (5.30)

$$V_{\text{Flüssig6}} = \frac{p \cdot (r_6^2 - r_5^2)}{S} \cdot h_z = \frac{p \cdot [(2,0670 \text{ m})^2 - (1,8100 \text{ m})^2]}{6} \cdot 0,3550 \text{ m}$$

= 0.1852 m³ (5.31)

$$frfvol_{6} = \frac{V_{Flüssig6}}{V_{Gesamt 6}} = \frac{0,1852 \,\text{m}^{3}}{0,1852 \,\text{m}^{3}} = 1,0000$$
(5.32)

5.1.5 Anteil des flüssigen Strömungsquerschnittes in yt-Richtung

Um diesen Wert bestimmen zu können, muss man Gewissheit darüber erlangen, wie viele bzw. welche Strukturen genau auf der Grenzfläche zum nächsten Sektor angeordnet sind. Abbildung 5-14 zeigt einen Blick auf die Grenzfläche zwischen den Sektoren eines Levels. Ebenfalls erhält man einen Blick auf die Grenzfläche zwischen zwei benachbarten Ringen. Die Abbildung gibt die Anzahl der Brennstäbe auf der yt-Grenzfläche mit 38,5 und die der xr-Grenzfläche mit 11 an. Diese Werte sind zum Teil Abschätzungen, da sich die Anzahl der Brennstäbe auf der xr-Grenzfläche nur schwer bestimmen lässt. Die beiden Werte beziehen sich auf Brennstäbe, die in ihrer Mitte von den Grenzflächen geschnitten werden. Brennstäbe die nur tangiert oder nur geringfügig berührt bzw. geschnitten werden, finden keine Berücksichtigung oder wurden zusammengefasst. Für Ring zwei und drei betragen die Werte für die yt- und xr-Richtung 22 und 22 bzw. 11 und 0 Brennstäbe.

Abbildung 5-14: Sicht auf die Grenzflächen zwischen den Sektoren und den Ringen [San06]

$$A_{\text{Gesamt 1}}^{(yt)} = h_z \cdot r_1 = 0,3550 \,\text{m} \cdot 0,7537 \,\text{m} = 0,2676 \,\text{m}^2 \tag{5.33}$$

$$A_{\text{Fest 1}}^{(\text{yt})} = N_1^{(\text{yt})} \cdot h_Z \cdot d_{\text{pin}} = 38,5 \cdot 0,3550 \,\text{m} \cdot 0,0091 \,\text{m} = 0,1244 \,\text{m}^2$$
(5.34)

$$A_{\text{Flüssig1}}^{(\text{yt})} = A_{\text{Gesamt1}}^{(\text{yt})} - A_{\text{Fest1}}^{(\text{yt})} = 0,2676 \,\text{m}^2 - 0,1244 \,\text{m}^2 = 0,1432 \,\text{m}^2$$
(5.35)

$$frfayt_{1} = \frac{A_{Flüssig1}^{(yt)}}{A_{Gesamt1}^{(yt)}} = \frac{0,1432 \,\text{m}^{2}}{0,2676 \,\text{m}^{2}} = 0,5352$$
(5.36)

$$A_{\text{Gesamt 2}}^{(\text{yt})} = h_Z \cdot (r_2 - r_1) = 0,3550 \,\text{m} \cdot (1,1820 \,\text{m} - 0,7537 \,\text{m}) = 0,1523 \,\text{m}^2 \tag{5.37}$$

$$A_{\text{Fest 2}}^{(yt)} = N_2^{(yt)} \cdot h_Z \cdot d_{\text{pin}} = 22 \cdot 0,3550 \,\text{m} \cdot 0,0091 \,\text{m} = 0,0711 \,\text{m}^2$$
(5.38)

$$A_{\text{Flüssig2}}^{(\text{yt})} = A_{\text{Gesamt2}}^{(\text{yt})} - A_{\text{Fest2}}^{(\text{yt})} = 0,1523 \,\text{m}^2 - 0,0711 \,\text{m}^2 = 0,0812 \,\text{m}^2 \tag{5.39}$$

$$frfayt_{2} = \frac{A_{Flüssig2}^{(yt)}}{A_{Gesamt2}^{(yt)}} = \frac{0,0812 \,\text{m}^{2}}{0,1523 \,\text{m}^{2}} = 0,5332$$
(5.40)

$$A_{\text{Gesamt 3}}^{(\text{yt})} = h_z \cdot (r_3 - r_2) = 0,3550 \,\text{m} \cdot (1,5820 \,\text{m} - 1,1820 \,\text{m}) = 0,1418 \,\text{m}^2 \tag{5.41}$$

$$A_{\text{Fest 3}}^{(yt)} = N_3^{(yt)} \cdot h_z \cdot d_{\text{pin}} = 11 \cdot 0,3550 \,\text{m} \cdot 0,0091 \,\text{m} = 0,0355 \,\text{m}^2 \tag{5.42}$$

$$A_{\text{Flüssig3}}^{(\text{yt})} = A_{\text{Gesamt3}}^{(\text{yt})} - A_{\text{Fest3}}^{(\text{yt})} = 0,1418 \,\text{m}^2 - 0,0355 \,\text{m}^2 = 0,1063 \,\text{m}^2$$
(5.43)

$$frfayt_{3} = \frac{A_{Flüssig3}^{(yt)}}{A_{Gesamt3}^{(yt)}} = \frac{0,1063 \,\text{m}^{2}}{0,1418 \,\text{m}^{2}} = 0,7494$$
(5.44)

$$A_{\text{Gesamt 4}}^{(\text{yt})} = h_{Z} \cdot (r_{4} - r_{3}) = 0,3550 \,\text{m} \cdot (1,7100 \,\text{m} - 1,5820 \,\text{m}) = 0,0454 \,\text{m}^{2}$$
(5.45)

$$A_{\text{Flüssig4}}^{(\text{yt})} = h_{Z} \cdot (r_{\text{Reflektor}} - r_{3}) = 0,3550 \,\text{m} \cdot (1,5900 \,\text{m} - 1,5820 \,\text{m}) = 0,0028 \,\text{m}^{2}$$
(5.46)

$$frfayt_4 = \frac{A_{Flüssig4}^{(yt)}}{A_{Gesamt4}^{(yt)}} = \frac{0,0028 \,\text{m}^2}{0,0454 \,\text{m}^2} = 0,0625$$
(5.47)

$$A_{\text{Gesamt 5}}^{(\text{yt})} = h_Z \cdot (r_5 - r_4) = 0,3550 \,\text{m} \cdot (1,8100 \,\text{m} - 1,7100 \,\text{m}) = 0,0355 \,\text{m}^2 \tag{5.48}$$

$$A_{\text{Fest5}}^{(\text{yt})} = h_Z \cdot (r_5 - r_4) = 0,3550 \,\text{m} \cdot (1,8100 \,\text{m} - 1,7100 \,\text{m}) = 0,0355 \,\text{m}^2 \tag{5.49}$$

$$A_{\text{Flüssig5}}^{(\text{yt})} = A_{\text{Gesamt5}}^{(\text{yt})} - A_{\text{Fest5}}^{(\text{yt})} = 0,0355 \,\text{m}^2 - 0,0355 \,\text{m}^2 = 0,0000 \,\text{m}^2 \tag{5.50}$$

$$frfayt_{5} = \frac{A_{Flüssig5}^{(yt)}}{A_{Gesamt5}^{(yt)}} = \frac{0,0000 \,\text{m}^{2}}{0,0355 \,\text{m}^{2}} = 0,0000$$
(5.51)

$$A_{\text{Gesamt 6}}^{(\text{yt})} = h_{Z} \cdot (r_{6} - r_{5}) = 0,3550 \,\text{m} \cdot (2,0670 \,\text{m} - 1,8100 \,\text{m}) = 0,0912 \,\text{m}^{2}$$
(5.52)

$$A_{\text{Flüssig6}}^{(\text{yt})} = h_Z \cdot (r_6 - r_5) = 0,3550 \,\text{m} \cdot (2,0670 \,\text{m} - 1,8100 \,\text{m}) = 0,0912 \,\text{m}^2 \tag{5.53}$$

$$frfayt_{6} = \frac{A_{Flüssig6}^{(yt)}}{A_{Gesamt6}^{(yt)}} = \frac{0,0912 \,\text{m}^{2}}{0,0912 \,\text{m}^{2}} = 1,0000$$
(5.54)

5.1.6 Anteil des flüssigen Strömungsquerschnittes in z-Richtung

Die axiale Betrachtung eines Sektors liefert einen Anblick, wie er in Abbildung 5-15 dargestellt ist. Die roten Objekte stellen Brennelemente dar, welche vom Kühlmittel umgeben sind.

Abbildung 5-15: Axiale Sicht auf den innersten Teil eines Sektors

Somit erfolg die Berechnung des flüssigen Anteils am Strömungsquerschnitt nach folgendem Muster.

$$A_{\text{Gesamt 1}}^{(z)} = \frac{p \cdot r_1^2}{S} = \frac{p \cdot (0,7537 \,\text{m})^2}{6} = 0,2974 \,\text{m}^2$$
(5.55)

$$A_{\text{Fest1}}^{(z)} = \frac{B_1}{S} \cdot N \cdot p \cdot r_{\text{pin}}^2 = \frac{37}{6} \cdot 331 \cdot p \cdot (0,0046 \,\text{m})^2 = 0,1328 \,\text{m}^2$$
(5.56)

$$A_{Flüssig1}^{(z)} = A_{Gesamt1}^{(z)} - A_{Fest1}^{(z)} = 0,2974 \,\text{m}^2 - 0,1328 \,\text{m}^2 = 0,1647 \,\text{m}^2 \tag{5.57}$$

$$frfaz_{1} = \frac{A_{Flüssig1}^{(z)}}{A_{Gesamt1}^{(z)}} = \frac{0,1647 \,\text{m}^{2}}{0,2974 \,\text{m}^{2}} = 0,5537 \tag{5.58}$$

$$A_{\text{Gesamt 2}}^{(z)} = \frac{p \cdot (r_2^2 - r_1^2)}{S} = \frac{p \cdot [(1,1820 \text{ m})^2 - (0,7537 \text{ m})^2]}{6} = 0,4348 \text{ m}^2$$
(5.59)

$$A_{\text{Fest2}}^{(z)} = \frac{B_2}{S} \cdot N \cdot p \cdot r_{\text{pin}}^2 = \frac{54}{6} \cdot 331 \cdot p \cdot (0,0046 \,\text{m})^2 = 0,1941 \,\text{m}^2$$
(5.60)

$$A_{\text{Flüssig2}}^{(z)} = A_{\text{Gesamt2}}^{(z)} - A_{\text{Fest2}}^{(z)} = 0,4348 \,\text{m}^2 - 0,1941 \,\text{m}^2 = 0,2408 \,\text{m}^2 \tag{5.61}$$

$$frfaz_{2} = \frac{A_{Flüssig2}^{(z)}}{A_{Gesamt2}^{(z)}} = \frac{0,2408 \,\text{m}^{2}}{0,4348 \,\text{m}^{2}} = 0,5537$$
(5.62)

$$A_{\text{Gesamt 3}}^{(z)} = \frac{p \cdot (r_3^2 - r_2^2)}{S} = \frac{p \cdot [(1,5820 \,\text{m})^2 - (1,1820 \,\text{m})^2]}{6} = 0,5782 \,\text{m}^2$$
(5.63)

$$A_{\text{Fest3}}^{(z)} = \frac{B_3}{S} \cdot N \cdot p \cdot r_{\text{pin}}^2 = \frac{72}{6} \cdot 331 \cdot p \cdot (0,0046 \,\text{m})^2 = 0,2580 \,\text{m}^2$$
(5.64)

$$A_{\text{Flüssig}3}^{(z)} = A_{\text{Gesamt}3}^{(z)} - A_{\text{Fest}3}^{(z)} = 0,5782 \,\text{m}^2 - 0,2580 \,\text{m}^2 = 0,3201 \,\text{m}^2 \tag{5.65}$$

$$frfaz_{3} = \frac{A_{Flüssig3}^{(z)}}{A_{Gesamt3}^{(z)}} = \frac{0,3201m^{2}}{0,5782m^{2}} = 0,5537$$
(5.66)

$$A_{\text{Gesamt 4}}^{(z)} = \frac{p \cdot (r_4^2 - r_3^2)}{S} = \frac{p \cdot [(1,7100 \text{ m})^2 - (1,5820 \text{ m})^2]}{6} = 0,2206 \text{ m}^2$$
(5.67)

$$A_{\text{Flüssig4}}^{(z)} = \frac{p \cdot (r_{\text{Reflektor}}^2 - r_3^2)}{S} = \frac{p \cdot [(1,5900 \,\text{m})^2 - (1,5820 \,\text{m})^2]}{6} = 0,0133 \,\text{m}^2$$
(5.68)

$$frfaz_{4} = \frac{A_{Flüssig4}^{(z)}}{A_{Gesamt4}^{(z)}} = \frac{0,0133 \,\text{m}^{2}}{0,2206 \,\text{m}^{2}} = 0,0602$$
(5.69)

$$A_{\text{Gesamt 5}}^{(z)} = \frac{p \cdot (r_5^2 - r_4^2)}{S} = \frac{p \cdot [(1,8100 \text{ m})^2 - (1,7100 \text{ m})^2]}{6} = 0,1843 \text{ m}^2$$
(5.70)

- 64 -

$$A_{\text{Fest 5}}^{(z)} = \frac{p \cdot (r_5^2 - r_4^2)}{S} = \frac{p \cdot [(1,8100 \,\text{m})^2 - (1,7100 \,\text{m})^2]}{6} = 0,1843 \,\text{m}^2 \tag{5.71}$$

$$A_{\text{Flüssig5}}^{(z)} = A_{\text{Gesamt5}}^{(z)} - A_{\text{Fest5}}^{(z)} = 0,1843 \,\text{m}^2 - 0,1843 \,\text{m}^2 = 0,0000 \,\text{m}^2 \tag{5.72}$$

$$frfaz_5 = \frac{A_{Flüssig5}^{(z)}}{A_{Gesamt5}^{(z)}} = \frac{0,0000 \,\text{m}^2}{0,1843 \,\text{m}^2} = 0,0000$$
(5.73)

$$A_{\text{Gesamt 6}}^{(z)} = \frac{p \cdot (r_6^2 - r_5^2)}{S} = \frac{p \cdot [(2,0670 \text{ m})^2 - (1,8100 \text{ m})^2]}{6} = 0,5217 \text{ m}^2$$
(5.74)

$$A_{\text{Flüssig6}}^{(z)} = \frac{p \cdot (r_6^2 - r_5^2)}{S} = \frac{p \cdot [(2,0670 \,\text{m})^2 - (1,8100 \,\text{m})^2]}{6} = 0,5217 \,\text{m}^2$$
(5.75)

$$frfaz_6 = \frac{A_{Flüssig6}^{(z)}}{A_{Gesamt6}^{(z)}} = \frac{0,5217 \,\text{m}^2}{0,5217 \,\text{m}^2} = 1,0000$$
(5.76)

5.1.7 Anteil des flüssigen Strömungsquerschnittes in xr-Richtung

Die Vorgehensweise ist analog zu der Vorgehensweise wie für die yt-Richtung (siehe Kapitel 5.1.5, speziell Abbildung 5-14).

$$A_{\text{Gesamt 1}}^{(\text{xr})} = \frac{2 \cdot p \cdot r_1}{S} \cdot h_z = \frac{2 \cdot p \cdot 0,7537 \,\text{m}}{6} \cdot 0,3550 \,\text{m} = 0,2802 \,\text{m}^2$$
(5.77)

$$A_{\text{Fest1}}^{(\text{xr})} = N_1^{(\text{xr})} \cdot h_Z \cdot d_{\text{pin}} = 11 \cdot 0,3550 \,\text{m} \cdot 0,0091 \,\text{m} = 0,0355 \,\text{m}^2$$
(5.78)

$$A_{\text{Flüssig1}}^{(\text{xr})} = A_{\text{Gesamt1}}^{(\text{xr})} - A_{\text{Fest1}}^{(\text{xr})} = 0,2802 \,\text{m}^2 - 0,0355 \,\text{m}^2 = 0,2447 \,\text{m}^2 \tag{5.79}$$

$$frfaxr_{1} = \frac{A_{Flüssig1}^{(xr)}}{A_{Gesamt1}^{(xr)}} = \frac{0,2447 \,\text{m}^{2}}{0,2802 \,\text{m}^{2}} = 0,8732$$
(5.80)

$$A_{\text{Gesamt 2}}^{(\text{xr})} = \frac{2 \cdot p \cdot r_2}{S} \cdot h_z = \frac{2 \cdot p \cdot 1,1820 \text{ m}}{6} \cdot 0,3550 \text{ m} = 0,4396 \text{ m}^2$$
(5.81)
- 65 -

$$A_{\text{Fest2}}^{(xr)} = N_2^{(xr)} \cdot h_z \cdot d_{\text{pin}} = 22 \cdot 0,3550 \,\text{m} \cdot 0,0091 \,\text{m} = 0,0711 \,\text{m}^2$$
(5.82)

$$A_{\text{Flüssig2}}^{(\text{xr})} = A_{\text{Gesamt2}}^{(\text{xr})} - A_{\text{Fest2}}^{(\text{xr})} = 0,4396 \,\text{m}^2 - 0,0711 \,\text{m}^2 = 0,3686 \,\text{m}^2 \tag{5.83}$$

$$frfaxr_{2} = \frac{A_{Flüssig2}^{(xr)}}{A_{Gesamt2}^{(xr)}} = \frac{0,3686 \,\text{m}^{2}}{0,4396 \,\text{m}^{2}} = 0,8383$$
(5.84)

$$A_{\text{Gesamt 3}}^{(\text{xr})} = \frac{2 \cdot p \cdot r_3}{S} \cdot h_z = \frac{2 \cdot p \cdot 1,5820 \,\text{m}}{6} \cdot 0,3550 \,\text{m} = 0,5881 \,\text{m}^2$$
(5.85)

$$A_{Flüssig3}^{(xr)} = \frac{2 \cdot p \cdot r_3}{S} \cdot h_z = \frac{2 \cdot p \cdot 1,5820 \,\mathrm{m}}{6} \cdot 0,3550 \,\mathrm{m} = 0,5881 \,\mathrm{m}^2$$
(5.86)

$$frfaxr_{3} = \frac{A_{Flüssig3}^{(xr)}}{A_{Gesamt3}^{(xr)}} = \frac{0,5881m^{2}}{0,5881m^{2}} = 1,0000$$
(5.87)

$$A_{\text{Gesamt 4}}^{(\text{xr})} = \frac{2 \cdot p \cdot r_4}{S} \cdot h_z = \frac{2 \cdot p \cdot 1,7100 \,\text{m}}{6} \cdot 0,3550 \,\text{m} = 0,6357 \,\text{m}^2$$
(5.88)

$$A_{\text{Fest 4}}^{(\text{xr})} = \frac{2 \cdot p \cdot r_4}{S} \cdot h_z = \frac{2 \cdot p \cdot 1,7100 \,\text{m}}{6} \cdot 0,3550 \,\text{m} = 0,6357 \,\text{m}^2$$
(5.89)

$$A_{\text{Flüssig4}}^{(\text{xr})} = A_{\text{Gesamt4}}^{(\text{xr})} - A_{\text{Fest4}}^{(\text{xr})} = 0,6357 \,\text{m}^2 - 0,6357 \,\text{m}^2 = 0,0000 \,\text{m}^2$$
(5.90)

frfaxr₄ =
$$\frac{A_{\text{Flüssig4}}^{(xr)}}{A_{\text{Gesamt4}}^{(xr)}} = \frac{0,0000 \,\text{m}^2}{0,6357 \,\text{m}^2} = 0,0000$$
 (5.91)

$$A_{\text{Gesamt 5}}^{(\text{xr})} = \frac{2 \cdot p \cdot r_5}{S} \cdot h_z = \frac{2 \cdot p \cdot 1,8100 \,\text{m}}{6} \cdot 0,3550 \,\text{m} = 0,6729 \,\text{m}^2$$
(5.92)

$$A_{\text{Fest5}}^{(\text{xr})} = \frac{2 \cdot p \cdot r_5}{S} \cdot h_z = \frac{2 \cdot p \cdot 1,8100 \,\text{m}}{6} \cdot 0,3550 \,\text{m} = 0,6729 \,\text{m}^2$$
(5.93)

$$A_{\text{Flüssig5}}^{(xr)} = A_{\text{Gesamt5}}^{(xr)} - A_{\text{Fest5}}^{(xr)} = 0,6729 \,\text{m}^2 - 0,6729 \,\text{m}^2 = 0,0000 \,\text{m}^2 \tag{5.94}$$

$$frfaxr_{5} = \frac{A_{Flüssig5}^{(xr)}}{A_{Gesamt5}^{(xr)}} = \frac{0,0000 \,\text{m}^{2}}{0,6729 \,\text{m}^{2}} = 0,0000$$
(5.95)

$$A_{\text{Gesamt 6}}^{(\text{xr})} = \frac{2 \cdot p \cdot r_6}{S} \cdot h_z = \frac{2 \cdot p \cdot 2,0670 \,\text{m}}{6} \cdot 0,3550 \,\text{m} = 0,7684 \,\text{m}^2$$
(5.96)

$$A_{\text{Fest}6}^{(\text{xr})} = \frac{2 \cdot p \cdot r_6}{S} \cdot h_z = \frac{2 \cdot p \cdot 2,0670 \,\text{m}}{6} \cdot 0,3550 \,\text{m} = 0,7684 \,\text{m}^2$$
(5.97)

$$A_{\text{Flüssig5}}^{(\text{xr})} = A_{\text{Gesamt5}}^{(\text{xr})} - A_{\text{Fest5}}^{(\text{xr})} = 0,7684 \,\text{m}^2 - 0,7684 \,\text{m}^2 = 0,0000 \,\text{m}^2 \tag{5.98}$$

$$frfaxr_{6} = \frac{A_{Flüssig6}^{(xr)}}{A_{Gesamt6}^{(xr)}} = \frac{0,0000 \,\text{m}^{2}}{0,7684 \,\text{m}^{2}} = 0,0000$$
(5.99)

5.1.8 Hydraulischer Durchmesser in yt-Richtung

Der hydraulische Durchmesser wird nach folgender Beziehung berechnet

$$hd = \frac{4 \cdot A_{d}}{U_{benetzt}}$$
(5.100)

Die Werte für die A_d entsprechen den Werten für den flüssigen Anteil der jeweiligen Zellenfläche. Die geometrische Definition des benetzten Umfangs ist in Abbildung 5-16 dargestellt.

$$U_{\text{benetzt 1}}^{(\text{yt})} = N_1^{(\text{yt})} \cdot 2 \cdot h_z = 38,5 \cdot 2 \cdot 0,3550 \,\text{m} = 27,3350 \,\text{m}$$
(5.101)

$$hdyt_{1} = \frac{4 \cdot A_{Flüssig1}^{(yt)}}{U_{benetzt1}^{(yt)}} = \frac{4 \cdot 0,1432 \, m^{2}}{27,3350 \, m} = 0,0210 \, m$$
(5.102)

$$U_{\text{benetzt 2}}^{(\text{yt})} = N_2^{(\text{yt})} \cdot 2 \cdot h_z = 22 \cdot 2 \cdot 0,3550 \,\text{m} = 15,6200 \,\text{m}$$
(5.103)

$$hdyt_{2} = \frac{4 \cdot A_{Flüssig2}^{(yt)}}{U_{benetzt2}^{(yt)}} = \frac{4 \cdot 0,0812 \,\text{m}^{2}}{15,6200 \,\text{m}} = 0,0208 \,\text{m}$$
(5.104)

$$U_{\text{benetzt 3}}^{(\text{yt})} = N_3^{(\text{yt})} \cdot 2 \cdot h_z = 11 \cdot 2 \cdot 0,3550 \,\text{m} = 7,8100 \,\text{m}$$
(5.105)

$$hdyt_{3} = \frac{4 \cdot A_{Flüssig3}^{(yt)}}{U_{benetzt3}^{(yt)}} = \frac{4 \cdot 0,1063 \,\text{m}^{2}}{7,8100 \,\text{m}} = 0,0544 \,\text{m}$$
(5.106)

$$U_{\text{benetzt 4}}^{(\text{yt})} = h_{z} = 0,3550 \,\text{m}$$
(5.107)

$$hdyt_{4} = \frac{4 \cdot A_{\text{Flüssig4}}^{(\text{yt})}}{U_{\text{benetzt 4}}^{(\text{yt})}} = \frac{4 \cdot 0,0028 \,\text{m}^{2}}{0,3550 \,\text{m}} = 0,0320 \,\text{m}$$
(5.108)

$$U_{\text{benetzt5}}^{(yt)} = 0,0000 \,\text{m}$$
 (5.109)

$$hdyt_5 = 0,000 \,\mathrm{m}$$
 (5.110)

$$U_{\text{benetzt 6}}^{(\text{yt})} = 2 \cdot h_{\text{Z}} = 2 \cdot 0,3550 \,\text{m} = 0,7100 \,\text{m} \tag{5.111}$$

$$hdyt_{6} = \frac{4 \cdot A_{Flüssig6}^{(yt)}}{U_{benetzt6}^{(yt)}} = \frac{4 \cdot 0,0912 \,\text{m}^{2}}{0,7100 \,\text{m}} = 0,5140 \,\text{m}$$
(5.112)

5.1.9 Hydraulischer Durchmesser in z-Richtung

Für die Berechnung in diesen Abschnitt sei auf Kapitel 5.1.6, besonders auf Abbildung 5-15 verwiesen. Die nachstehende Abbildung zeigt die benetzten Umfänge in z-Richtung.

Abbildung 5-17: Benetzter Umfang in z-Richtung

Damit ergeben sich folgende Gleichungen zur Berechnung des hydraulischen Durchmessers.

$$U_{\text{benetzt 1}}^{(z)} = \frac{B_1}{S} \cdot N \cdot 2 \cdot p \cdot r_{\text{pin}} = \frac{37}{6} \cdot 331 \cdot 2 \cdot p \cdot 0,0046 \,\text{m} = 58,3540 \,\text{m}$$
(5.113)

$$hdz_{1} = \frac{4 \cdot A_{Flüssig1}^{(z)}}{U_{benetzt1}^{(z)}} = \frac{4 \cdot 0,1647 \,\text{m}^{2}}{58,3540 \,\text{m}} = 0,0113 \,\text{m}$$
(5.114)

$$U_{\text{benetzt2}}^{(z)} = \frac{B_2}{S} \cdot N \cdot 2 \cdot p \cdot r_{\text{pin}} = \frac{54}{6} \cdot 331 \cdot 2 \cdot p \cdot 0,0046 \,\text{m} = 85,3040 \,\text{m}$$
(5.115)

$$hdz_{2} = \frac{4 \cdot A_{\text{Flüssig2}}^{(z)}}{U_{\text{benetzt2}}^{(z)}} = \frac{4 \cdot 0,2408 \,\text{m}^{2}}{85,3040 \,\text{m}} = 0,0113 \,\text{m}$$
(5.116)

$$U_{\text{benetzt 3}}^{(z)} = \frac{\mathsf{B}_3}{\mathsf{S}} \cdot \mathsf{N} \cdot 2 \cdot p \cdot \mathsf{r}_{\text{pin}} = \frac{72}{6} \cdot 331 \cdot 2 \cdot p \cdot 0,0046 \,\mathrm{m} = 113,4180 \,\mathrm{m}$$
(5.117)

$$hdz_{3} = \frac{4 \cdot A_{\text{Flüssig3}}^{(z)}}{U_{\text{benetzt3}}^{(z)}} = \frac{4 \cdot 0,3201 \text{m}^{2}}{113,4180 \text{m}} = 0,0113 \text{m}$$
(5.118)

$$U_{\text{benetzt 4}}^{(z)} = \frac{2 \cdot p \cdot r_{\text{Re flektor}}}{S} = \frac{2 \cdot p \cdot 1,5900 \,\text{m}}{6} = 1,6650 \,\text{m}$$
(5.119)

$$hdz_{4} = \frac{4 \cdot A_{Flüssig4}^{(z)}}{U_{benetzt4}^{(z)}} = \frac{4 \cdot 0,0133 \,\text{m}^{2}}{1,6650 \,\text{m}} = 0,0319 \,\text{m}$$
(5.120)

$$U_{\text{benetzt 5}}^{(z)} = \left[\frac{2 \cdot p}{S} \cdot (r_5 + r_4)\right] + \left[2 \cdot (r_5 - r_4)\right]$$

$$= \left[\frac{2 \cdot p}{6} \cdot (1,810 \,\text{m} + 1,710 \,\text{m})\right] + \left[2 \cdot (1,810 \,\text{m} + 1,710 \,\text{m})\right] = 3,8860 \,\text{m}$$
(5.121)

$$hdz_{5} = \frac{4 \cdot A_{Flüssig5}^{(z)}}{U_{benetzt5}^{(z)}} = \frac{4 \cdot 0,1843 \, m^{2}}{3,8860 \, m} = 0,1897 \, m \tag{5.122}$$

$$U_{\text{benetzt 6}}^{(z)} = \left[\frac{2 \cdot p}{S} \cdot (r_6 + r_5)\right] = \left[\frac{2 \cdot p}{6} \cdot (2,067 \,\text{m} + 1,810 \,\text{m})\right] = 4,0600 \,\text{m}$$
(5.123)

$$hdz_{6} = \frac{4 \cdot A_{\text{Flüssig6}}^{(z)}}{U_{\text{benetzt6}}^{(z)}} = \frac{4 \cdot 0,5217 \,\text{m}^{2}}{4,0600 \,\text{m}} = 0,5140 \,\text{m}$$
(5.124)

5.1.10 Hydraulischer Durchmesser in xr-Richtung

Die Berechnung erfolgt analog zu den Berechnungen in Kapitel 5.1.8.

$$U_{\text{benetzt1}}^{(\text{xr})} = N_1^{(\text{xr})} \cdot 2 \cdot h_z = 11 \cdot 2 \cdot 0,3550 \,\text{m} = 7,8100 \,\text{m}$$
(5.125)

$$hdxr_{1} = \frac{4 \cdot A_{Flüssig1}^{(xr)}}{U_{benetzt1}^{(xr)}} = \frac{4 \cdot 0,2447 \, m^{2}}{7,8100 \, m} = 0,1253 \, m$$
(5.126)

$$U_{\text{benetzt2}}^{(\text{xr})} = N_2^{(\text{xr})} \cdot 2 \cdot h_z = 22 \cdot 2 \cdot 0,3550 \,\text{m} = 15,6200 \,\text{m}$$
(5.127)

$$hdxr_{2} = \frac{4 \cdot A_{Flüssig2}^{(xr)}}{U_{benetzt2}^{(xr)}} = \frac{4 \cdot 0,3686 \,\text{m}^{2}}{15,6200 \,\text{m}} = 0,0944 \,\text{m}$$
(5.128)

$$U_{\text{benetzt 3}}^{(\text{xr})} = 0,0000 \,\text{m}$$
 (5.129)

$$hdxr_3 = 0,000 m$$
 (5.130)

¹ Normalerweise beträgt dieser Wert 0, da aber TRACE einen Wert > 0 verlangt, wurde der Zellenumfang als Maßstab herangezogen.

$$U_{\text{benetzt 4}}^{(\text{xr})} = 0,0000 \,\text{m}$$
 (5.131)

$$hdxr_4 = 0,000 \,\mathrm{m}$$
 (5.132)

$$U_{\text{benetzt5}}^{(\text{xr})} = 0,000 \,\text{m}$$
 (5.133)

$$hdxr_5 = 0,0000 m$$
 (5.134)

$$U_{\text{benetzt 6}}^{(\text{xr})} = 0,0000\,\text{m} \tag{5.135}$$

$$hdxr_6 = 0,000 \,\mathrm{m}$$
 (5.136)

Diese Berechnungsschritte wurden für alle 30 axialen Levels durchgeführt und sind in Tabelle 5-2 zusammengefasst.

Level	Parameter	Ring 1	Ring 2	Ring 3	Ring 4	Ring 5	Ring 6
	frvol [-]	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000
	frfayt [-]	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000
	frfaz [-]	0,1839	0,1839	0,1839	0,1839	1,0000	1,0000
1	frfaxr [-]	1,0000	1,0000	1,0000	1,0000	1,0000	0,0000
	hdyt [m]	0,3400	0,3400	0,3400	0,3400	0,6800	0,4093
	hdz [m]	0,0400	0,0400	0,0400	0,0400	0,4117	0,5140
	hdxr [m]	0,3400	0,3400	0,3400	0,3400	0,6800	0,0000
	frvol [-]	0,1839	0,1839	0,1839	0,1839	0,5000	1,0000
2	frfayt [-]	0,0000	0,0000	0,0000	0000 0,0000		1,0000
	frfaz [-]	0,8468	0,8468	0,8468	1,0000	0,0000	1,0000
	frfaxr [-]	0,0000	0,0000	0,0000	0,0000	1,0000	0,0000
	hdyt [m]	0,0000	0,0000	0,0000	0,0000	0,1536	0,5140
	hdz [m]	0,5362	0,5362	0,5362	0,4928	0,4117	0,5140
	hdxr [m]	0,0000	0,0000	0,0000	0,0000	0,4800	0,0000
	frvol [-]	0,8468	0,8468	0,8468	1,0000	0,0000	1,0000
	frfayt [-]	0,5496	0,5477	0,7571	1,0000	0,0000	1,0000
	frfaz [-]	0,3872	0,3872	0,3872	1,0000	0,0000	1,0000
3	frfaxr [-]	0,8771	0,8433	1,0000	0,0000	0,0000	0,0000
	hdyt [m]	0,2150	0,2136	0,4811	0,4205	0,0000	0,5140
	hdz [m]	0,1226	0,1226	0,1226	0,4928	0,4117	0,5140
	hdxr [m]	0,8715	0,7233	2,320	0,0000	0,0000	0,0000
4	frvol [-]	0,8717	0,8717	0,8717	1,0000	0,0000	1,0000

Tabelle 5-2: Ermittelte thermohydraulische Zellenparameter

	frfayt [-]	0,0991	0,0954	0,5143	1,0000	0,0000	1,0000	
	frfaz [-]	0,5275	0,5275	0,5275	0,0000	0,0000	1,0000	
	frfaxr [-]	0,7542	0,6867	1,0000	0,0000	0,0000	0,0000	
	hdyt [m]	0,0420	0,0403	0,3549	0,4280	0,0000	0,5140	
	hdz [m]	0,1800	0,1800	0,18000	0,2383	0,1897	0,5140	
	hdxr [m]	0,8174	0,6413	2,6080	0,0000	0,0000	0,0000	
	frvol [-]	0,5275	0,5275	0,5275	0,0000	0,0000	1,0000	
	frfayt [-]	0,0000	0,0000	0,0000	0,0000	0,0000	1,0000	
	frfaz [-]	0,8763	0,8763	0,8763	1,0000	0,0000	1,0000	
5	frfaxr [-]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	
	hdyt [m]	0,0000	0,0000	0,0000	0,0000	0,0000	0,1028	
	hdz [m]	0,1416	0,1416	0,1416	0,4928	0,1897	0,5140	
	hdxr [m]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	
	frvol [-]	0,8763	0,8763	0,8763	0,0601	0,0000	1,0000	
	frfayt [-]	0,0712	0,0674	0,4992	0,0625	0,0000	1,0000	
	frfaz [-]	0,5537	0,5537	0,5537	0,0602	0,0000	1,0000	
6	frfaxr [-]	0,7466	0,6770	1,0000	0,0000	0,0000	0,0000	
	hdyt [m]	0,0297	0,0280	0,2756	0,0320	0,0000	0,5140	
	hdz [m]	0,0113	0,0113	0,0113	0,0319	0,1897	0,5140	
	hdxr [m]	0,5077	0,4322	0,8920	0,0000	0,0000	0,0000	
	frvol [-]	0,5537	0,5537	0,5537	0,0602	0,0000	1,0000	
	frfayt [-]	0,5352	0,5332	0,7494	0,0625	0,0000	1,0000	
	frfaz [-]	0,5537	0,5537	0,5537	0,0602	0,0000	1,0000	
7-16	frfaxr [-]	0,8732	0,8383	1,0000	0,0000	0,0000	0,0000	
	hdyt [m]	0,0210	0,0208	0,0544	0,0320	0,0000	0,5140	
	hdz [m]	0,0113	0,0113	0,0113	0,0319	0,1897	0,5140	
	hdxr [m]	0,1253	0,0944	0,0000	0,0000	0,0000	0,0000	
	frvol [-]	0,5537	0,5537	0,5537	0,0602	0,0000	1,0000	
	frfayt [-]	0,5352	0,5332	0,7494	0,0625	0,0000	1,0000	
	frfaz [-]	0,8535	0,8535	0,8535	0,0602	0,0000	1,0000	
17	frfaxr [-]	0,8732	0,8383	1,0000	0,0000	0,0000	0,0000	
	hdyt [m]	0,0210	0,0208	0,0544	0,0320	0,0000	0,5140	
	hdz [m]	0,1165	0,1165	0,1165	0,0319	0,1897	0,5140	
	hdxr [m]	0,1253	0,0944	0,0000	0,0000	0,0000	0,0000	
	frvol [-]	0,9248	0,9248	0,9248	0,0602	0,0000	1,0000	
	frfayt [-]	0,0596	0,0557	0,4930	0,0625	0,0000	1,0000	
40	frfaz [-]	0,5463	0,5463	0,5380	0,0602	0,0000	1,0000	
18	frfaxr [-]	0,7434	0,6730	1,0000	0,0000	0,0000	0,0000	
	hdyt [m]	0,0257	0,0239	0,3938	0,0320	0,0000	0,5140	
	hdz [m]	0,6315	0,5868	0,4807	0,0319	0,1897	0,5140	
	ndxr [m]	1,1735	0,8334	0,0000	0,0000	0,0000	0,0000	
	frvoi [-]	0,5463	0,5463	0,5380	1,0000	0,0000	1,0000	
	fffayt [-]	0,2106	0,2073	0,5744	1,0000	0,0000	1,0000	
10	IIIaz [-]	0,2536	0,2536	0,2453	0,2367	0,0000	1,0000	
19	Intaxr [-]	0,7846	0,7255	1,0000	0,0000	0,0000	0,0000	
	nayt [m]	0,0814	0,0800	0,2910	0,3116	0,0000	0,5140	
		0,1101	0,1101	0,1155	0,1220	0,1897	0,5140	
		0,4846	0,4221	0,7960	0,0000	0,0000	0,0000	
20		0,2536	0,2536	0,2453	0,2367	0,0000	1,0000	

	frfayt [-]	0,0000	0,0000	0,0000	0,0000	0,0000	1,0000
	frfaz [-]	0,6577	0,6577	0,8259	1,0000	0,0000	1,0000
	frfaxr [-]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
	hdyt [m]	0,0000	0,0000	0,0000	0,0000	0,0000	0,5140
	hdz [m]	0,2387	0,2387	0,5897	0,4928	0,1897	0,5140
	hdxr [m]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
	frvol [-]	0,6577	0,6577	0,8259	1,0000	0,0000	1,0000
	frfayt [-]	0,4657	0,4634	0,7119	1,0000	0,0000	1,0000
	frfaz [-]	0,6577	0,6577	0,8259	1,0000	0,0000	1,0000
21	frfaxr [-]	0,8542	0,8142	1,0000	0,0000	0,0000	0,0000
	hdyt [m]	0,1997	0,1982	0,4211	0,5120	0,0000	0,5140
	hdz [m]	0,2387	0,2387	0,5897	0,4928	0,1897	0,5140
	hdxr [m]	0,6473	0,5717	1,0640	0,0000	0,0000	0,0000
	frvol [-]	0,6577	0,6577	0,7462	0,8133	0,0000	1,0000
	frfayt [-]	0,4657	0,4634	0,6310	0,7616	0,0000	1,0000
	frfaz [-]	0,6577	0,6577	0,6655	1,0000	0,0000	1,0000
22	frfaxr [-]	0,8542	0,8142	1,0000	0,0000	0,0000	0,3084
	hdyt [m]	0,2458	0,2436	0,3722	0,1933	0,0000	0,5140
	hdz [m]	0,2387	0,2387	0,4661	0,4928	0,1897	0,5140
	hdxr [m]	1,6526	1,2357	1,7000	0,0000	0,0000	0,8500
	frvol [-]	0,6577	0,6577	0,7871	1,0000	0,0000	1,0000
	frfayt [-]	0,4657	0,4634	0,5594	1,0000	0,0000	1,0000
	frfaz [-]	0,6577	0,6577	0,6705	1,0000	0,0000	0,0000
23	frfaxr [-]	0,8542	0,8142	1,0000	0,0000	0,0000	0,0000
	hdyt [m]	0,2458	0,2436	0,2441	0,5120	0,0000	0,4046
	hdz [m]	0,2387	0,2387	0,2487	0,4928	0,1897	0,4562
	hdxr [m]	1,6526	1,2357	0,0000	0,0000	0,0000	0,0000
	frvol [-]	0,6577	0,6577	0,6903	1,0000	0,0789	1,0000
	frfayt [-]	0,4657	0,4634	0,5617	1,0000	0,0000	1,0000
	frfaz [-]	0,6577	0,6577	0,6705	1,0000	0,0000	1,0000
24	frfaxr [-]	0,8542	0,8142	1,0000	0,1354	0,1279	0,0000
	hdyt [m]	0,2458	0,2436	0,2471	0,5120	0,0000	0,4046
	hdz [m]	0,2387	0,2387	0,2487	0,4928	0,1897	0,5140
	hdxr [m]	1,6526	1,2357	0,0000	0,1800	0,1800	0,0000
	frvol [-]	0,6577	0,6577	0,6903	1,0000	0,2368	1,0000
	frfayt [-]	0,4657	0,4634	0,5617	1,0000	0,0000	1,0000
	frfaz [-]	0,6577	0,6577	0,6705	1,0000	0,0000	1,0000
25	frfaxr [-]	0,8542	0,8142	1,0000	0,4061	0,3837	0,3084
	hdyt [m]	0,2458	0,2436	0,2471	0,5120	0,0000	0,5140
	hdz [m]	0,2387	0,2387	0,2487	0,4928	0,1897	0,5140
	hdxr [m]	1,6526	1,2357	0,0000	0,1800	0,1800	0,8500
	frvol [-]	0,6577	0,6577	0,6903	1,0000	0,2368	1,0000
	frfayt [-]	0,4657	0,4634	0,5617	1,0000	0,0000	1,0000
	frfaz [-]	0,1634	0,1634	0,0831	0,0809	0,0000	1,0000
26	frfaxr [-]	0,8542	0,8142	1,0000	0,4061	0,3837	0,0000
	hdyt [m]	0,2238	0,1660	0,2254	0,5039	0,0000	0,5140
	hdz [m]	0,0846	0,0846	0,0322	0,0200	0,1897	0,5140
	hdxr [m]	0,9946	0,8267	2,4980	0,1800	0,1800	0,0000
27	frvol [-]	0,1634	0,1634	0,0831	0,0000	0,0000	1,0000

	frfayt [-]	0,0000	0,0000	0,0000	0,0000	0,0000	1,0000	
	frfaz [-]	0,9711	0,9711	0,9853	0,4435	0,0000	0,0000	
	frfaxr [-]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	
	hdyt [m]	0,0000	0,0000	0,0000	0,0000	0,0000	0,3129	
	hdz [m]	1,7382	1,7382	3,4684	0,2279	0,1897	0,4562	
	hdxr [m]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	
	frvol [-]	0,9711	0,9711	0,9853	0,4435	0,0000	0,0000	
	frfayt [-]	0,8752	0,8747	0,9327	0,4531	0,0000	0,0000	
	frfaz [-]	0,9711	0,9711	0,9853	0,4435	0,0000	0,0000	
28	frfaxr [-]	0,9660	0,9566	1,0000	0,0000	0,0000	0,0000	
	hdyt [m]	0,3874	0,3859	0,6615	0,6187	0,0000	0,0000	
	hdz [m]	1,7382	1,7382	3,4684	0,2279	0,1897	0,4562	
	hdxr [m]	1,0507	0,9046	2,4000	0,0000	0,0000	0,0000	
	frvol [-]	0,9711	0,9711	0,9853	0,4435	0,0000	0,0000	
	frfayt [-]	0,8752	0,8747	0,9327	0,4531	0,0000	0,0000	
	frfaz [-]	0,1998	0,1998	0,1016	0,0000	0,0000	0,0000	
29	frfaxr [-]	0,9660	0,9566	1,0000	0,0000	0,0000	0,0000	
	hdyt [m]	0,3963	0,3947	0,6878	0,2142	0,0000	0,0000	
	hdz [m]	0,1941	0,1941	0,1941	0,2383	0,1897	0,4562	
	hdxr [m]	2,1409	1,5680	0,7351	0,0000	0,0000	0,0000	
	frvol [-]	0,8746	0,8746	0,9362	0,8624	0,0000	0,0000	
	frfayt [-]	0,8081	0,8076	0,8612	0,7790	0,0000	0,0000	
	frfaz [-]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	
30	frfaxr [-]	0,8918	0,8832	0,9233	0,0000	0,0000	0,0000	
	hdyt [m]	0,3808	0,3793	0,6423	0,3928	0,0000	0,0000	
	hdz [m]	0,5180	0,6028	0,6261	0,2383	0,1897	0,4562	
	hdxr [m]	1,0032	0,8692	2,1660	0,0000	0,0000	0,0000	

5.1.11 Definition der Wärmequellen

Mittels der Daten in Tabelle 5-2 kann das thermohydraulische Modell des WWER-1000 RDB erstellt werden. Um die Wärmeerzeugung zu simulieren, müssen zusätzlich so genannte HTSTR-Komponenten (siehe 3.3) generiert werden. Durch geeignete Variation der HTSTR-spezifischen Parameter können verschiedenste Leistungszustände simuliert werden. Insgesamt wurden 24 Wärmequellen definiert, wobei nur 18 wirklich Wärme produzieren, da die anderen die Reflektorelemente darstellen. In Tabelle 5-3 sind einige Eingabeparameter aufgeführt, die von Bedeutung für die Berechnung sind.

Merkmal	Wert
Material Gasspalt/Zentralbohrung	Helium
Material Brennstoff	UO ₂
Material Hüllrohr	Zr-Nb-Legierung
α-Wert des Gasspaltes [W/m²K]	3176
Druck im Gasspalt [MPa]	2
Anteil der theoretischen Dichte [-]	0,95

Das Pellet wurde ebenfalls radial unterteil, wie Abbildung 5-18 anschaulich darstellt.

Abbildung 5-18: Radiale Unterteilung des Pellets

Die hier angegebenen Werte für die Abmessung der Zentralbohrung und des Gasspaltes entsprechen den Werten am Ende eines Brennelementzyklus. Sie unterscheiden sich, wie bereits unter Kapitel 2.2.2 erwähnt, deutlich von den Werten in Abbildung 2-10. Die HTSTR Elemente bilden die Schnittstelle zwischen Thermohydraulik und Neutronenkinetik, da die neutronenphysikalischen Bedingungen die Art und Weise der Wärmefreisetzung beeinflussen.

5.1.12 Vereinfachte Darstellungen in der Modellierung des RDB

In der Modellierung mussten einige Vereinfachungen durchgeführt werden, da eine detaillierte Darstellung nicht immer möglich ist.

Die erste Vereinfachung betrifft den elliptischen Bodenbereich des Reaktordruckbehälters. Durch die grobe Unterteilung des Modells, musste der gewölbte Bodenbereich in einen ebenen Bereich umgewandelt werden (Abbildung 5-19).

Abbildung 5-19: Vereinfachte Darstellung des Bodenbereiches

Durch diese Maßnahme entsteht eine 90° Umlenkung des Kühlmittels, was zu einer Erhöhung der Druckverluste führt. Um diesen Problem entgegen zu wirken, wurde der Abstand zwischen dem elliptischen Boden des RDB und dem elliptischen Bodens der Kerntonne erhöht (von 11,1 auf 17 cm). In der nachstehenden Tabelle sind ausgewählte Druckverluste für das Referenzkraftwerk und für die Simulationen gegenübergestellt.

	Druckdifferenz								
	Messung	Berechnung mit TRACE							
P0-P2 [MPa]	0,1971	0,2170							
P2-P4 [MPa]	0,1422	0,0959							
P4-P5 [MPa]	0,0284	0,0290							
P4-P6 [MPa]	0,0363	0,0438							
P0-P6 [MPa]	0,3760	0,3567							

Tabelle 5-4: Ausgewählte Druckdifferenzen im stationären Zustand

Die Werte der Berechnung weisen leichte Abweichungen zu den Werten der Spezifikation auf. Zum einen kommt dies durch die Modellierung und den damit begangenen Vereinfachungen, siehe elliptischer/ebener Bodenbereich, zum anderen ist die genaue Lokalisierung der Messpunkte nicht möglich, da, wie schon erwähnt, einige Abschnitte des Reaktors vereinfacht dargestellt sind. Die Position der einzelnen Druckdifferenzmesspunkte sind der Abbildung 5-20 zu entnehmen.

Abbildung 5-20: Position der Druckdifferenz Messpunkte im RDB

Eine weitere Vereinfachung ist der Konsole geschuldet. Die Konsole dient zur mechanischen Aufnahme der Kerntonne mitsamt der aktiven Zone. Durch die grobe Unterteilung des Reaktors und der damit einhergehenden Größe der Zellen, ist die Darstellung der Konsole nicht notwendig. Die durch die Konsole verursachten Turbulenzen sind ein lokales Phänomen und können durch die grobe Unterteilung nicht aufgelöst werden. In Abbildung 5-21 ist eine schematische Darstellung einer Konsole innerhalb einer Zelle zu sehen. Die roten Linien sollen die Bereiche der Turbulenzen anzeigen, welche sich aber nur innerhalb der Zelle einstellen. Dadurch hebt sich diese Zelle nicht von den benachbarten Zellen ab, was dazu führt, dass eine Modellierung der Konsole nicht notwendig ist.

Abbildung 5-21: Schematische Darstellung der Konsole

Der Deckelbereich des RDB wurde ebenfalls vereinfacht dargestellt. Auch hier wurde aus einem gewölbten Element ein Ebenes, wie Abbildung 5-22 darstellt. Der obere Bereich des Reaktors spielt für die untersuchten Transienten eine untergeordnete Rolle. In dem Bereich unterhalb des Deckels kommt es zu Rückströmung des Fluides, welches nicht direkt in den Kühlmittelaustrittsstutzen geflossen ist.

Abbildung 5-22: Modellierung des oberen RDB Bereichs

5.2 Neutronenkinetische Modellierung

Neben der Thermohydraulik muss auch die Neutronenphysik modelliert werden¹. Da bereits die aktive Zone aus thermohydraulischer Sicht aus 12 Levels besteht (10 x aktiv + 2 x Reflektor), bietet sich für die neutronenphysikalische Nodalisierung ebenfalls diese Unterteilung an. Wie bereits in Kapitel 5.1.3 erwähnt (siehe auch Abbildung 5-9) besteht die aktive Zone aus 163 Brennelementen die von 48 Reflektorelementen umgeben sind. Das obere und das untere Ende jedes Brennelement besteht ebenfalls aus einen Reflektor. In Abbildung 5-23 ist die schrittweise Unterteilung des Reaktordruckbehälters hin zum einzelnen Brennelement zu erkennen. Die blau eingefärbten Bereiche kennzeichnen hierbei den Reflektor und die roten Bereiche die Bereiche der Wärmeerzeugung. Die axiale Unterteilung des aktiven Bereichs (rot) beträgt 355 mm. Der obere Reflektor hat eine Abmessung von 249 mm und der untere von 223 mm. Die 163 Brennelement sind in 28 verschiedene Gruppen unterteilt, die sich hinsichtlich ihrer Eigenschaften unterscheiden (Tabelle 5-5). Die Gruppe 29 ist dem Reflektor vorbehalten.

¹ Die neutronenkinetische Modellierung ist nur für die Aufgabe 2 des Benchmarks relevant (siehe Kapitel 7).

Abbildung	5-23:	Nodalisierung	der	aktiven	Zone

Brennelementtyp	Anreicherung	Abbrand [MWd/kg U]	Jahre in Kern	Abbrennbare Absorber
1	4,23 %	37,00	3	
2	4,23 %	40,18	3	
3	4,23 %	26,73	2	
4	4,4 %	26,82	2	
5	4,4 %	27,04	2	
6	3,3 %	36,57	3	
7	4,23 %	12,33	1	Х
8	4,23 %	26,44	2	
9	4,4 %	37,44	3	
10	4,23 %	30,58	2	
11	4,23 %	39,53	3	
12	4,4 %	24,06	2	
13	4,4 %	8,80	1	Х
14	4,4 %	37,48	3	
15	4,23 %	38,01	3	
16	4,23 %	37,86	3	

5 Entwicklung e	eines 3D-Kernmodells	für den Reaktord	lruckbehälter
-----------------	----------------------	------------------	---------------

17	4,23 %	15,28	1	Х
18	4,23 %	10,85	1	Х
19	4,23 %	30,70	2	
20	4,4 %	38,09	3	
21	4,23 %	31,03	2	
22	4,4 %	11,43	1	Х
23	4,23 %	38,16	3	
24	4,23 %	15,45	1	Х
25	4,4 %	11,47	1	Х
26	4,4 %	24,17	2	
27	4,23 %	10,92	1	Х
28	4,4 %	8,83	1	Х
29		Refle	ektor	

Mit Hilfe der Tabelle 5-5 und der dazugehörigen Anordnung der 28 (29) Typen, dargestellt in Abbildung 5-24, kann das neutronenphysikalische Strukturierung erfolgen.

Abbildung 5-24: Radiale Anordnung der 28(+1) Brennelement Typen

Hierfür wurden die 29 Brennelementtypen in 12 axiale Schichten unterteilt (siehe Abbildung 5-25) [Koe04].

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29
1	281	281	281	281	281	281	281	281	281	281	281	281	281	281	281	281	281	281	281	281	281	281	281	281	281	281	281	281	281
2	1	11	21	31	41	51	61	71	81	91	101	111	121	131	141	151	161	171	181	191	201	211	221	231	241	251	261	271	282
3	2	12	22	32	42	52	62	72	82	92	102	112	122	132	142	152	162	172	182	192	202	212	222	232	242	252	262	272	282
4	3	13	23	33	43	53	63	73	83	93	103	113	123	133	143	153	163	173	183	193	203	213	223	233	243	253	263	273	282
5	4	14	24	34	44	54	64	74	84	94	104	114	124	134	144	154	164	174	184	194	204	214	224	234	244	254	264	274	282
6	5	15	25	35	45	55	65	75	85	95	105	115	125	135	145	155	165	175	185	195	205	215	225	235	245	255	265	275	282
7	6	16	26	36	46	56	66	76	86	96	106	116	126	136	146	156	166	176	186	196	206	216	226	236	246	256	266	276	282
8	7	17	27	37	47	57	67	- 77	87	97	107	117	127	137	147	157	167	177	187	197	207	217	227	237	247	257	267	277	282
9	8	18	28	38	48	58	68	78	88	98	108	118	128	138	148	158	168	178	188	198	208	218	228	238	248	258	268	278	282
10	9	19	29	39	49	59	69	79	89	99	109	119	129	139	149	159	169	179	189	199	209	219	229	239	249	259	269	279	282
11	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150	160	170	180	190	200	210	220	230	240	250	260	270	280	282
12	283	283	283	283	283	283	283	283	283	283	283	283	283	283	283	283	283	283	283	283	283	283	283	283	283	283	283	283	283

Abbildung 5-25: Axiale Unterteilung der 29 Brennelementtypen

Somit ergeben sich 283 verschiedene Bereiche (280 für die 28 realen Brennelemente + 2 für den obere und unteren axialen Reflektor der Brennelemente +1 für das Reflektorelement). Diese Bereiche unterscheiden sich hinsichtlich ihrer Materialzusammensetzung (Anreicherung, Abbrand, etc.). In Abhängigkeit von unter anderem Brennstoff- und Moderatortemperatur wurden diesen Bereichen verschiedene Werte für die Wirkungsquerschnitte (Spaltung, Streuung, etc.) zugeordnet. Diese Werte wurden in einer Look-up-Tabelle zusammengefasst. Die in den Look-up-Tabellen enthaltenen Wirkungsquerschnitte wurden mit Zellcodes (z.B. CASMO) für bestimmte Brennstoff- und Moderatortemperaturen erstellt. Eine in PACRS implementierte Interpolationsroutine sorgt dafür, dass die aktuellen Wirkungsquerschnitte während der Rechnung zur Lösung der Neutronendiffusionsgleichung berücksichtigt werden. Die Wirkungsquerschnittsdaten (Look-up-Tabelle) ist ein Teil der Spezifikationen und wurde somit allen Teilnehmer des Benchmarks zur Verfügung gestellt. Dies garantiert, dass alle Teilnehmer mit den gleichen Wirkungsquerschnitten rechnen und so eine Vergleichbarkeit gewährleistet wird.

Der nächste Schritt zur Kopplung ist das so genannte Mapping. Das Mapping verbindet das thermohydraulische Modell mit PARCS. Dazu werden die 163 Brennelemente an die korrespondierenden Zellen der TRACE-Komponente angebunden. Dies geschieht für alle 12 axialen Levels. Dabei wird jeder Zelle des aktiven Kerns der VESSEL-Komponente eine Position in PARCS zugeordnet. Die Abbildung 5-26 zeigt die zwei Modell von PARCS und TRACE. Dabei besteht das PARCS-Modell aus 163 Elementen und das TRACE-Modell für die aktive Zone besitzt 18 Sektoren. Durch diese Ungleichmäßigkeit wird ein Mapping erforderlich, welches ein PARCS-Element an ein TRACE-Element koppelt. Über Wichtungsfaktoren werden die geometrischen Besonderheiten berücksichtigt. So besteht z. B. die Position 82 in aus 6 gleichen Teilen zu je 1/6, da dies der Mittelpunkt des Kernes ist und so alle 6 inneren Sektoren die Position 82 bilden. Während der gekoppelten Berechnung greifen die beiden ProProgramme auf dieses Mapping zurück, um die jeweils berechneten Werte an die richtige Zelle zu übermitteln.

Abbildung 5-26: Kopplung zwischen PARCS und TRACE

5.3 Modellierung des Primärkreislaufes

Die in dieser Arbeit vorgenommenen Untersuchungen beschränken sich auf den RDB und den Kern. Daher wurde der Primärkreislauf unter Nutzung der TRACE-Komponenten BREAK, FILL und PIPE sehr einfach modelliert. Es wurde bereits erwähnt, dass die Komponenten BREAK und FILL zur Modellierung von Randbedingungen benutzt werden (siehe Kapitel 3.3). Durch Nutzung dieser Komponenten wird die Nachbildung der Elemente die den PKL repräsentieren, wie z.B. die Hauptkühlmittelpumpen oder den Druckhalter, umgangen. Vom Vorteil ist auch, dass dadurch die Größe der Eingabedatei limitiert wird und somit mögliche Fehler ausgeschlossen werden, die sich zwangsläufig bei großen Dateien ergeben. Die verwendeten PIPE's (Rohrleitungen) entsprechen den Anschlüssen für Kühlmitteleintritt- bzw. austritt. An dieser Stelle soll ein weiters Program eingeführt werden, welches die Modellierung von Kreislaufen oder komplexen Bauteilen vereinfacht. Das auf JAVA [Krü02] basierende Programm SNAP [Jon06] hat durch die grafische Eingabeoberfläche einen Vorteil gegenüber der Standarteingabe durch ASCII-Dateien was die Übersichtlichkeit betrifft. Mittels SNAP wurde die unter Abbildung 5-27 gezeigte Darstellung realisiert. Auf der linken Seite der Abbildung erkennt man vier FILL Komponenten (301 – 304) und vier PIPE Komponenten (201 – 204). Diese acht Komponenten repräsentieren den Kühlmitteleintritt. Die rechte Seite zeigt den Kühlmittelaustritt, dargestellt durch vier BREAK Komponenten (401 – 404) und wiederum vier PIPE Komponenten (205 – 208). In der Mitte der Abbildung ist der, mit 101 gekennzeichnete, RDB zu erkennen. Auffällig dabei ist die Darstellung der axialen und radialen Unterteilung.

Abbildung 5-27: Grafische Darstellung des TRACE-Modell

Die in Abbildung 5-27 dargestellte Anordnung wurde mit der SNAP Version 2.42 erstellt.

5.4 Anwendung des 3D-Modells

Mit den vorgestellten RDB-Modell (Thermohydraulik) und Kernmodell (Neutronenkinetik), sowie mit den Anschlussleitungen zum RDB (kalte/heiße Stränge des PKL) werden im Detail folgende Untersuchungen vorgenommen:

 Nachrechnung eines Aufheiz-Experiment während der Inbetriebsetzungsphase am KKW Kozloduy 6. Hier ist nur das TRACE-Modell erforderlich, da die Rückwirkungsmechanismen zwischen Neutronik und Thermohydraulik aufgrund der geringen Reaktorleistung und Temperaturdifferenz eine geringe Rolle spielen. Im Vordergrund steht die Untersuchung der Kühlmittelvermischung im Ringraum des RDB.

 Simulation eines unterstellten Frischdampfleitungsbruches (MSLB), wobei die Thermohydraulik und Neutronenkinetik in enger Wechselwirkung stehen und die Kühlmittelvermischung eine wesentliche Rolle spielt.
6 Qualifizierung des entwickelten 3D-RDB Modells

6.1 Beschreibung des Experimentes zur Kühlmittelvermischung

Um die Ergebnisse der Computersimulation einschätzen zu können, wurden experimentelle Daten des Kernkraftwerks Kozloduy 6 herangezogen. Während der Inbetriebsetzungsphase wurden Experiment durchgeführt, um die Kühlmittelvermischung studieren zu können. Die gemessenen Werte für Druck, Temperatur und Massenstrom in den jeweiligen kalten Strängen sind die Randbedingungen in der Computersimulation. Bei diesem Experiment, welches sich über einen Zeitraum von 1800 Sekunden abspielte und bei einer Leistung von 281 MW stattfand, wurde das Frischdampfisolationsventil 1 geschlossen und der Dampferzeuger 1 wurde von der Speisewasserversorgung getrennt. Durch diese Maßnahmen stieg die Temperatur in dem kalten Strang #1 um ca. 14 K, der Massenstrom sank um ca. 3,5 % bezogen auf den stationären Zustand und die Leistung stieg auf 286 MW. Nach ca. 90 Sekunden überstieg die Temperatur des kalten Strang #1 die des heißen Strang #1. Innerhalb von 20 Minuten stabilisierte sich die Temperaturdifferenz bei 0,7 K. Nach 30 bis 35 Minuten stabilisierte sich die Anlage und das Experiment wurde beendet [Koe04].

6.2 Anfangs- und Randbedingungen für die Simulation

Als Anfangs- und Randbedingungen wurden die Kühlmitteltemperaturen am RDB-Eintritt, die Massendurchsätze und der Systemdruck in der Benchmarkspezifikation vorgegeben. Aus Gründen der Sensitivität des Programms wurden zwei Eingabetableaus erstellt, die die experimentellen Daten enthalten. Die erste Eingabe basiert auf Werten, die zu 5 verschiedenen Zeitpunkten ermittelt wurden. Die Tabelle 6-1 bis Tabelle 6-4 geben diese Werte wieder.

Zeit [s]	Temperatur [K]	Druck am Eintritt [MPa]	Massenstrom [m ³ /s]
0	541,72	15,97	4737
165	550,75	16,12	4627
340	554,35	15,98	4580
920	555,15	15,97	4569
1800	555,47	15,97	4566

Tabelle 6-1: Anfangsbedingungen im KM-Eintritt #1

Tabelle 6-2: Anfangsbedingungen im KM-Eintritt #2

Zeit [s]	Temperatur [K]	Druck am Eintritt [MPa]	Massenstrom [m ³ /s]
0	541,65	15,97	4718
165	542,45	16,12	4697
340	542,85	15,98	4682
920	542,95	15,97	4678
1800	543,28	15,97	4676

Tabelle 6-3: Anfangsbedingungen im KM-Eintritt #3

Zeit [s]	Temperatur [K]	Druck am Eintritt [MPa]	Massenstrom [m ³ /s]
0	541,88	15,97	4682
165	541,45	16,12	4681
340	542,55	15,98	4680
920	541,95	15,97	4675
1800	542,38	15,97	4669

Tabelle 6-4: Anfangsbedingungen im KM-Eintritt #4

Zeit [s]	Temperatur [K]	Druck am Eintritt [MPa]	Massenstrom [m ³ /s]
0	541,85	15,97	4834
165	541,75	16,12	4833
340	542,65	15,98	4831
920	542,15	15,97	4826
1800	542,47	15,97	4819

Das zweite Eingabetableau besitzt eine feinere Unterteilung der Zeitschritte. Hierfür wurden aller 12 Sekunden Werte ermittelt, sodass für dieses Tableau 150 Wertepaare vorhanden sind. Diese Werte stehen im Anhang A oder unter [Koe04] zur Verfügung. Die Werte wurden durch das Kernüberwachungssystem des Kernkraftwerks aufgenommen und sind die Mittelwerte von einem Temperaturwiderstand und 2 Thermoelementen, welche an jeden Kühlmittel-Eintritt bzw. Austritt angebracht sind.

6.3 Darstellung ausgewählter TRACE Ergebnisse

Erstes Ziel der TRACE-Simulation war es, für das dargestellte 3D-Modell die Betriebsparameter zum Zeitpunkt vor Testbeginn so gut wie möglich zu berechnen. Deshalb wurden vor der Berechnung der Transiente die Werte des stationären Zustandes ermittelt. Diese Werte sind in der nachstehenden Tabelle zusammengefasst (Tabelle 6-5).

Parameter	Experiment	Messgenauigkeit	TRACE
Leistung [MW]	281	± 60	281
Druck P4 [MPa]	15,593	± 0,3	15,592
Gesamt-Δp [MPa]	0,418	± 0,043	0,404
Temperatur KM-Eintritt #1 [K]	541,75	± 1,5	541,78
Temperatur KM-Eintritt #2 [K]	541,85	± 1,5	541,88
Temperatur KM-Eintritt #3 [K]	541,75	± 1,5	541,78
Temperatur KM-Eintritt #4 [K]	541,75	± 1,5	541,78
Temperatur KM-Austritt #1 [K]	545,00	± 2,0	544,63
Temperatur KM-Austritt #2 [K]	545,00	± 2,0	544,70
Temperatur KM-Austritt #3 [K]	544,90	± 2,0	544,61
Temperatur KM-Austritt #4 [K]	545,00	± 2,0	544,62
Massenstrom Loop #1 [kg/s]	4737	± 110	4749
Massenstrom Loop #2 [kg/s]	4718	± 110	4735
Massenstrom Loop #3 [kg/s]	4682	± 110	4750
Massenstrom Loop #4 [kg/s]	4834	± 110	4737
Gesamtmassenstrom [kg/s]	18971	± 450	18971

 Tabelle 6-5: Vergleich ausgewählter Parameter zum Zeitpunkt t = 0 s

Es ist deutlich zu erkennen, dass die Werte des Anfangszustandes meist exakt nachgebildet wurden. Die gleiche Gegenüberstellung wurde für die Werte des Endzustandes der Transiente erstellt (Tabelle 6-6).

Parameter	Experiment	Messgenauigkeit	TRACE
Leistung [MW]	286	± 60	286
Druck P4 [MPa]	15,593	± 0,3	15,591
Gesamt-Δp [MPa]	0,417	± 0,043	0,404
Temperatur KM-Eintritt #1 [K]	555,35	± 1,5	555,39
Temperatur KM-Eintritt #2 [K]	543,05	± 1,5	543,08
Temperatur KM-Eintritt #3 [K]	542,15	± 1,5	542,18
Temperatur KM-Eintritt #4 [K]	542,35	± 1,5	542,38
Temperatur KM-Austritt #1 [K]	554,85	± 2,0	554,32

 Tabelle 6-6: Vergleich ausgewählter Parameter zum Zeitpunkt t = 1800 s

6 Qualifizierung des entwickelten 3D-RDB Modells

Temperatur KM-Austritt #2 [K]	548,55	± 2,0	547,60
Temperatur KM-Austritt #3 [K]	545,75	± 2,0	545,44
Temperatur KM-Austritt #4 [K]	546,45	± 2,0	545,69
Massenstrom Loop #1 [kg/s]	4566	± 110	4657
Massenstrom Loop #2 [kg/s]	4676	± 110	4693
Massenstrom Loop #3 [kg/s]	4669	± 110	4724
Massenstrom Loop #4 [kg/s]	4819	± 110	4724
Gesamtmassenstrom [kg/s]	18730	± 450	18798

Auch hier zeigt sich eine hohe Genauigkeit der berechneten Werte zu den experimentell ermittelten Werten. Einzelne Parameter werden im Folgenden genauer betrachtet.

Als Ergebnis dieser Berechnung wurden neben den Kühlmitteltemperaturen am Reaktoraustritt auch die Temperaturen am Reaktoreintritt aufgenommen. Diese Werte sind nachstehend grafisch dargestellt.

Abbildung 6-1: Kühlmitteltemperaturen am Eintritt #1

Die Werte des Graphen TRACE 2, welcher die feinere zeitliche Unterteilung wiedergibt, sind fast deckungsgleich zu den experimentellen Werten. Dies war zu erwarten, da diese Werte den Messwerten entsprechen. Es ist aber zu erkennen, dass der Graph, der die wenigen Messwerte repräsentiert, etwas abweicht. Der verzögerte Anstieg der Kühlmitteleintrittstemperatur am Eintritt 1 konnte nicht ordnungsgemäß dargestellt werden, da mit den wenigen Messwerten der Anstieg der Temperatur sofort erfolgt. In den drei folgenden Abbildungen wird der experimentell Verlauf durch beiden Graphen sehr genau wiedergeben.

Abbildung 6-2: Kühlmitteltemperaturen am Eintritt #2

Abbildung 6-3: Kühlmitteltemperaturen am Eintritt #3

Abbildung 6-4: Kühlmitteltemperaturen am Eintritt #4

Viel interessanter erscheint jedoch ein Blick auf die Kühlmittelaustrittstemperaturen. Bevor diese mit den Werten des Experiments verglichen werden, sollte im Vorhinein der Frage nachgegangen werden, mit welchen Werten gerechnet werden muss. Da TRACE über kein Turbulenz-Modul verfügt, sollten die Ergebnisse nicht die Genauigkeit von CFD¹-Berechnung erreichen [Nas04]. Es sollten sich aber die gleichen Tendenzen einstellen. Aus Gründen, die im weiteren Verlauf aufgeführt werden, ist mit einer kompletten Kühlmittelvermischung nicht zu rechnen. Es werden sich also am Kühlmittel-Austritt unterschiedliche Temperaturen herausbilden.

Die vier nachstehenden Abbildungen zeigen jeweils die Temperaturen der Kühlmittelaustrittsstutzen. Die Abbildungen wurden um jeweils zwei Verläufe einer CFX5 Berechnung ergänzt [Böt06]. In Abbildung 6-5 ist zu erkennen, dass die Kühlmittelaustrittstemperatur bei 555 K liegt. Damit liegt sie geringfügig unter der Kühlmitteleintrittstemperatur (siehe Abbildung 6-1). Alle Berechnungen, sowohl die mittels TRACE als auch die mit CFX5, bilden den experimentell ermittelten Verlauf sehr gut nach.

¹ CFD ist ein numerisches Strömungssimulationsprogramm.

Abbildung 6-5: Temperaturen im Kühlmittelaustrittsstutzen #1 in Abhängigkeit des zeitlichen Verlaufes der Transiente

Abbildung 6-6: Temperaturen im Kühlmittelaustrittstutzen #2 in Abhängigkeit des zeitlichen Verlaufes der Transiente

Für Abbildung 6-6 bilden sich drei unterschiedliche Verlaufsebenen ab. Der experimentelle Verlauf zeigt nur eine geringfügige Erwärmung von ca. 1 K. Die Verläufe der CFX5 Berechnungen nähern sich gegen Ende der Transiente den experimentellen Werte, liegen aber über dem Großteil der Transiente ca. 1 K über dem Verlauf des Experimentes. Relativ große Abweichungen weisen die TRACE Berechnungen auf. Die Abweichung beträgt zum experimentellen Verlauf ca. 2 K und zum Verlauf der CFX5 Berechnung ca. 1 K. Bei genauerem Studium der Spezifikation zu diesen Benchmark [Koe04], findet man für die Temperatur im Kühlmittelaustrittsstutzen #2 zwei unterschiedliche Werte. Der erste Wert beträgt 545,78 K und der zweite beträgt 548,55 K. Ursache für diese Diskrepanzen können in der Datenaufzeichnung liegen. Da zu dem zweiten Wert kein vollständiger Datensatz existiert, sondern nur Anfangsund Endwert, kann keine grafische Darstellung erfolgen. Daher wurde mit dem ersten Datensatz der zeitliche Verlauf grafisch dargestellt. Wie schon in Tabelle 6-6 zu erkennen war, stimmen die berechneten Werte mit einer experimentell ermittelten Temperatur von 548,55 K am KM-Austritt sehr gut überein. Sowohl Abbildung 6-7 als auch Abbildung 6-8 zeigen, dass die berechneten Werte dem Verlauf des Experimentes mit einer geringen Abweichung folgen. An dieser Stelle sei darauf hingewiesen, dass die Temperaturmessgenauigkeit mit ± 2 K angegeben ist.

Abbildung 6-7: Temperaturen im Kühlmittelaustrittstutzen #3 in Abhängigkeit des zeitlichen Verlaufes der Transiente

Abbildung 6-8: Temperaturen im Kühlmittelaustrittstutzen #4 in Abhängigkeit des zeitlichen Verlaufes der Transiente

	Kühlmittel- Austritt #1	Kühlmittel- Austritt #2	Kühlmittel- Austritt #3	Kühlmittel- Austritt #4
Experiment 1	554,63 K	545,78 K	545,90 K	546,00 K
Experiment 2	554,85 K	548,55 K	545,75 K	546,45 K
TRACE 1	554,86 K	548,50 K	545,39 K	545,39 K
TRACE 2	555,13 K	548,63 K	545,58 K	545,72 k
CFX 1	555,03 K	546,29 K	545,75 K	546,68 K
CFX 2	555,21 K	546,80 K	545,51 K	547,81 K

Tabelle 6-7: Gegenüberstellung der Kühlmittelaustrittstemperaturen

Anhand der Tabelle 6-7 und der Abbildung 6-5 bis Abbildung 6-8 werden zwei Sachverhalte ersichtlich:

- 1. Es kommt zu keiner vollständigen Vermischung des Kühlmittels.
- 2. Die Vermischung ist ungleichmäßig.

6.4 Diskussion der ermittelten Ergebnisse

Um sich von der Kühlmittelvermischung ein genaues Bild zu machen, bietet sich eine räumliche und zeitliche Darstellung der Temperatur im Ringspalt an.

Die beiden folgenden Abbildungen (Abbildung 6-9 und Abbildung 6-10) zeigen eine nahezu konstante Temperaturverteilung über die axiale Ausdehnung des Ringraumes zu Beginn und zum Ende der Transiente. Abbildung 6-10 zeigt aber auch, dass sich die Beeinflussung nur auf die Sektoren 5 und 6 beschränkt. Eine gleichmäßige Temperaturverteilung zu beiden Seiten des Sektors 4 konnte nicht gezeigt werden.

Da die Temperaturverteilung über die Höhe nahezu konstant ist, genügt es, sich die zeitliche Temperaturverteilung für eine axiale Höhe des Ringraums zu betrachten, wie es in Abbildung 6-11 dargestellt ist.

Abbildung 6-9: Temperaturverteilung im Ringraum zum Zeitpunkt t = 0 s

Abbildung 6-10: Temperaturverteilung im Ringraum zum Zeitpunkt t = 1800 s

Abbildung 6-11: Zeitlicher Verlauf der Kühlmittelvermischung in Höhe der Kühlmitteleintrittsstutzen

Abbildung 6-11 zeigt eine unmittelbare Beeinflussung der Sektoren 5 und 6, wobei die Beeinflussung in dem Sektor 5 besonders deutlich ausfällt.

Mittels der gewonnenen Einblicke in den zeitlichen Verlauf der Temperaturverteilung bzw. Kühlmittelvermischung, wandeln sich die 2 oben genannten Erkenntnisse in Fragen um:

- 1. Warum kommt es zu keiner vollständigen Kühlmittelvermischung?
- 2. Warum ist die Kühlmittelvermischung ungleichmäßig?

Für die unvollständige und ungleichmäßige Kühlmittelvermischung sind zum einen die geometrischen Bedingungen und die Randbedingungen als Ursache anzusehen. Bei vollem Kühlmitteldurchsatz durch die Stränge wird der Strömung der Weg aufgezwängt. Das Kühlmittel gelangt in den engen Ringraum, wo die einzige Richtung nach unten führt. Abbildung 6-12 zeigt die Einspeisung des Kühlmittels in den Ringraum und die schemenhafte Verteilung des Kühlmittels. Mit Hilfe dieses Schemas erkennt man zum einen, dass sich die Kühlmitteldurchsätze der Stränge #1 und #4 an der Sektorgrenzfläche 3-4 gegenseitig blockieren.

Abbildung 6-12: Schematische Darstellung der Kühlmitteleinspeisung und vermischung im Ringraum

Somit wird ein Eindringen des wärmeren Kühlmittels des Stranges #1 in den Sektor 3 stark behindert. Im Bereich der Grenzfläche kommt es zwar zu Vermischungen in Folge von Turbulenzen, aber die grobe Unterteilung verhindert eine genaue Betrachtung der Grenzfläche. Zum anderen zeigt sich, dass das Kühlmittel des Stranges #1 und das des Stranges #2 sich im Sektor 5 treffen. Dies führt zu der oben gezeigten Erwärmung des Sektors 5.

Gestützt werden diese Aussagen auch durch Tabelle 6-8, die den Austausch von Kühlmittel über die Sektorgrenzflächen aufführt.

Tabelle 6-8: Kühlmittelaustausch in azimutale Richtung im Ringraum auf Höhe der Kühlmitteleintrittsstutzen

Sektorgrenzfläche	Massendurchsatz [kg/s]
1-2	802,49
2-3	-807,99
3-4	48,00
4-5	801,73
5-6	-788,83
6-1	9,49

Praktische Untersuchungen an der Versuchsanlage ROCOM (**Ro**ssendorf **Co**olant **M**ixing Model) am Forschungszentrum Rossendorf zeigten bei äquivalenten Nenndurchsatz der Förderpumpen ein ähnliches Bild, wo sich die Störung nur auf den betroffenen Sektor beschränkt [Gru03; Höh03].

Im weiteren Verlauf durchströmt das Kühlmittel das untere Plenum, wie in Abbildung 6-13 eingezeichnet ist. Durch das Vorhanden sein von Unterstützungssäulen im unteren Plenum wird eine Strömung in radiale und/oder azimutale Richtung stark beeinträchtigt.

Abbildung 6-13: Strömungspfad des Kühlmittels im unteren Plenum [San06]

Das unvermischte Kühlmittel gelangt durch die perforierten Tragesäulen zu den Brennelementen. Hier wird ebenfalls ein Austausch in radiale und/oder azimutale Richtung beeinträchtigt, da bei Nenndrehzahl der Pumpen die axiale Strömungsrichtung aufgezwungen wird. Bei Naturumlauf dagegen kommt es auch zum vermehrten Quertransport des Kühlmediums. Das nun erwärmte Kühlmittel gelangt in das obere Plenum, von wo es aus in Richtung Kühlmittelaustrittstutzen transportiert wird. Somit führen Geometrie und Massendurchsatz zu einem Bild einer unvollständigen und ungleichmäßigen Vermischung.

Die experimentell ermittelten Daten konnten mit hoher Genauigkeit durch TRACE reproduziert werden. Somit eignet sich das 3D-Modell für weitere Untersuchungen im Rahmen des VVER-1000 Coolant Transient Benchmark.

7 Anwendung des qualifizierten 3D-RDB-Modells

7.1 Vorbetrachtungen

Als Anwendungsbeispiel wurde die Aufgabe 2 des VVER-1000 Coolant Transient Benchmarks ausgewählt. Dabei geht es um die Simulation des RDB und Kernverhaltens bei einem unterstellten Frischdampfleitungsbruchs im Loop # 4 mit dem gekoppelten Programmsystem TRACE/PARCS. Die thermohydraulischen Anfangs- und Randbedingungen sind in der Benchmarkspezifikation vorgegeben. Da eine MSLB-Transiente durch eine starke Kühlmittelvermischung im RDB-Ringraum, sowie durch eine enge Wechselwirkung zwischen Thermohydraulik und Neutronenkinetik gekennzeichnet ist, kann das entwickelte 3D-Modell von TRACE direkt zur Untersuchung des FD-Leitungsbruches verwendet werden. Das für die gekoppelte Rechnung benötigte Thermohydraulik-Neutronenkinetik-Mapping wurde bereits am IRS entwickelt. Die Analyse kann in zwei Teilabschnitte unterteilt werden:

- Schritt 1: Qualifizierung der Thermohydraulik-Neutronenkinetik-Kopplung durch Nachrechnen von Nullleistungszuständen bei denen die Steuerstäbe in unterschiedlichen Positionen stehen. Diese Aufgabe dient zum Nachweis der ordnungsgemäßen Einbindung der Wirkungsquerschnitte aus den Look-up-Tabellen.
- Schritt 2: Simulation des Kernverhaltens bei Vollleistung im stationären Zustand bzw. während eines Bruches in einer FD-Leitung für gegebene Anfangsund Randbedingungen.

Das verwendete thermohydraulische Modell entspricht dem des Kapitels 6 mit Ausnahme einiger Änderungen bezüglich der Randbedingungen (Massenstrom, Eintrittstemperaturen, Reaktorleistung). Die Randbedingungen sind in den Tabellen des Anhanges B enthalten.

7.2 Nullleistungszustände

Um sicherzustellen, dass die Kopplung zwischen TRACE und PARCS einwandfrei funktioniert und dass das Mapping korrekt ist, wird dies mittels geeigneter Szenarien überprüft. Dafür bieten sich verschiedene Stellungen von Steuerstäben und Steuerstabgruppen im leistungslosen Zustand an. Die Leistung beträgt hierbei 0,1 % der Nennleistung (3000 MW) und die Temperaturen des Kühlmittels und des Brennstoffes betragen 552 K. In Tabelle 7-1 sind 7 Szenarien definiert, die zur Überprüfung dienen. Diese Untersuchungen wurden mit Wirkungsquerschnittsbibliotheken durchgeführt, die die Bedingungen zum Ende eines Zyklus widerspiegeln. Die in Abbildung 7-1 gezeigte Anordnung der 163 Brennelemente und der 61 Steuerstäbe ist von großer Bedeutung, da die Positionierung der Steuerstäbe für das gewünschte Leistungsprofil sorgt und den Reaktor im Störfall in einen sicheren Zustand überführt. Die 61 Steuerstäbe sind in 10 Steuerstabgruppen zusammen gefasst.

Abbildung 7-1: Anordnung der Steuerstäbe im Kern des WWER-1000

Szenario	Steuerstabstellung
1	Gruppe I – X: 100 % ausgefahren
	Gruppe I – V: 100 % ausgefahren
21	Gruppe VI: 81 % ausgefahren
2	Gruppe VII – X: 0 % ausgefahren
	Stab #90: 100 % ausgefahren
3	Gruppe I – X: 0 % ausgefahren
1	Gruppe I – X: 0 % ausgefahren
4	Stab #90: 100 % ausgefahren
5	Gruppe I – X: 0 % ausgefahren
5	Stab #63: 100 % ausgefahren
6	Gruppe I – X: 0 % ausgefahren
0	Stab #140: 100 % ausgefahren
	Gruppe I – X: 0 % ausgefahren
7	Stab #117: 100 % ausgefahren
	Stab #140: 100 % ausgefahren

Tabelle 7-1: Definition der Steuerstabstellungen für die "Hot Zero Power" St	zenarien
--	----------

Bei den betroffenen Steuerstäben (#63, #90, #117 und #140) handelt es sich um die Steuerstäbe mit den höchsten Abschaltreaktivitäten. Daher werden diese Steuerstäbe auch in weiteren Berechnungen benutzt.

¹ Szenario 2 beschreibt den Zustand nahe dem kritischen Zustand.

7.2.1 Ergebnisse für Szenario 1

In dem ersten Szenario sind alle Steuerstabgruppen zu 100 % ausgefahren. Daher sollte sich ein Wert von $k_{eff} > 1$ ergeben, was sich auch bestätigte. Der Wert betrug dabei $k_{eff} = 1,034081$. Abbildung 7-2 zeigt in radialer Richtung die relative Leistung des Szenario 1. Zu erkennen ist der leistungslose Reflektorbereich und eine relativ gleichmäßige Leistungsverteilung im Kern mit leicht erhöhten Werten im mittleren Ringabschnitt.

Abbildung 7-2: Relative Leistungsverteilung in radialer Richtung für das Szenario 1

7.2.2 Ergebnisse für Szenario 2

Das Szenario 2 beschreibt den Zustand nahe dem kritischen Zustand. Daher ergibt sich ein Wert von $k_{eff} = 1,000465$. Abbildung 7-3 zeigt die dazugehörige Leistungsverteilung. Es ist deutlich zuerkennen, dass in den Randbereichen, wo die Steuerstäbe ausgefahren sind, die höchsten Werte erreicht werden.

Abbildung 7-3: Relative Leistungsverteilung in radialer Richtung für das Szenario 2

7.2.3 Ergebnisse für Szenario 3

Als Gegenstück zu Szenario 1 kann das Szenario 3 angesehen werden, da hier alle Steuerstäbe eingefahren sind. Somit ist ein Wert von $k_{eff} < 1$ zu erwarten. Mit einem Wert von $k_{eff} = 0.965945$ für wird dem entsprochen. Abbildung 7-4 weist Ähnlichkeiten zur Abbildung 7-2 auf, hat aber im Allgemeinen geringere Werte für die radialen Leistungsfaktoren.

Abbildung 7-4: Relative Leistungsverteilung in radialer Richtung für das Szenario 3

7.2.4 Ergebnisse für Szenario 4

Szenario 4 orientiert sich an Szenario 3, da hier nur ein einzelner Steuerstab komplett ausgefahren ist bzw. nicht eingefahren wurde. Sollte es im Verlauf des Betriebes eines Kernreaktors durch einen Störfall zu einer Reaktorschnellabschaltung kommen, muss damit gerechnet werden, dass sich einzelne Steuerstäbe verklemmen. Dennoch muss sichergestellt werden, dass der Reaktor in einen unterkritischen Zustand überführt wird. Abbildung 7-5 zeigt die radiale Leistungsverteilung des Kernes bei einen ausgefahrenen Steuerstab (#90).

Abbildung 7-5: Relative Leistungsverteilung in radialer Richtung für das Szenario 4

Es ist eine deutliche Verzerrung der Leistungsverteilung zu erkennen, deren Spitze im Bereich des ausgefahrenen Steuerstabes zu finden ist. Für k_{eff} wurde ein Wert von keff = 0,971447 ermittelt.

7.2.5 Ergebnisse für Szenario 5

Für das Szenario 5 gilt das gleiche wie für Szenario 4, mit der Ausnahme, dass ein anderer Steuerstab (#63) betroffen ist. Auch hier erkennt man die gleichen Sachverhalte wie im vorangegangenen Szenario (siehe Abbildung 7-6). Mit $k_{eff} = 0.971427$ wurde ein Wert ermittelt, der ähnlich dem Wert vom Szenario 4 ist.

Abbildung 7-6: Relative Leistungsverteilung in radialer Richtung für das Szenario 5

7.2.6 Ergebnisse für Szenario 6

In diesem Szenario blieb wiederum ein Steuerstab ausgefahren (#140). Da Steuerstab #140 als auch Steuerstab #63 zur gleichen Steuerstabgruppe gehören (Gruppe IV), ist zu erwarten, dass der Wert für k_{eff} ähnlich dem Wert von Szenario 5 ist. Mit keff = 0,971427 entspricht dieser Wert genau dem Wert des Szenario 5. Das dazu gehörige radiale Leistungsprofil zeigt Abbildung 7-7.

Abbildung 7-7: Relative Leistungsverteilung in radialer Richtung für das Szenario 6

7.2.7 Ergebnisse für Szenario 7

In diesem Szenario blieben zwei Steuerstäbe in ausgefahrener Stellung stecken. Neben Steuerstab #140 ist auch Steuerstab #117 betroffen. Da beide Steuerstäbe nah beieinander liegen, muss sich in diesen Bereich des Kernes eine erhöhte Leistung einstellen (siehe hierzu Abbildung 7-8).

Abbildung 7-8: Relative Leistungsverteilung in radialer Richtung für das Szenario 7

Da diesmal zwei Steuerstäbe betroffen sind, muss sich auch der Wert für k_{eff} von den 3 vorangegangen Werten unterscheiden. Dieser Wert sollte höher ausfallen und wurde mit $k_{eff} = 0.9793136$ bestimmt.

7.2.8 Diskussion der Ergebnisse

Da diese Szenarien ebenfalls Bestandteil der Aufgabe 2 des Benchmarks waren, bietet sich ein Vergleich mit den Ergebnissen anderer Teilnehmer an. In der Gegenüberstellung der Werte für k_{eff} (Abbildung 7-9) zeigt sich, dass alle drei Benchmark Teilnehmer sehr ähnliche Werte für die Ergebnisse aufweisen. Ausgehend von den Werten der PSU [Iva06a] liegen die Werte der UPISA [Bou06] geringfügig darunter und die Werte des FZK liegen geringfügig darüber.

Abbildung 7-9: Vergleich der k_{eff} Werte mit anderen Teilnehmern des Benchmarks¹

Wie bereits weiter oben erwähnt, muss auch bei verklemmten Steuerstäben der Reaktor in einen unterkritischen Zustand gebracht werden. Daher bietet sich die Berechnung der Reaktivität für die Szenarien an, bei denen die Steuerstäbe nicht eingefahren wurden. Die Reaktivität wird nach [Koe04] in pcm (per cent mille) wie folgt berechnet.

$$r = \frac{\mathrm{d}k}{\mathrm{k}} = \frac{\mathrm{k}_{\mathrm{m}} - \mathrm{k}_{\mathrm{n}}}{\mathrm{k}_{\mathrm{m}} \cdot \mathrm{k}_{\mathrm{n}}} \cdot 10^{5} \tag{7.1}$$

¹ Die PSU hat für das Szenario 7 keine Werte vorgelegt.

Der Index m bezieht sich auf Szenario 4, 5, 6 oder 7 und der Index n seinerseits auf 1 oder 3.

Somit ergeben sich folgende Werte für die einzelnen Reaktivitäten bezogen auf den Zustand in dem alle Steuerstäbe ausgefahren sind (Gleichungen (7.2) bis (7.5)):

$$r_{1-4} = \frac{k_4 - k_1}{k_4 \cdot k_1} \cdot 10^5 = \frac{0,9714470 - 1,0340810}{0,9714470 \cdot 1,0340810} \cdot 10^5 = -6235,00$$
(7.2)

$$r_{1-5} = \frac{k_5 - k_1}{k_5 \cdot k_1} \cdot 10^5 = \frac{0,9714270 - 1,0340810}{0,9714270 \cdot 1,0340810} \cdot 10^5 = -6237,12$$
(7.3)

$$r_{1-6} = \frac{k_6 - k_1}{k_6 \cdot k_1} \cdot 10^5 = \frac{0,9714270 - 1,0340810}{0,9714270 \cdot 1,0340810} \cdot 10^5 = -6237,12$$
(7.4)

$$r_{1-7} = \frac{k_7 - k_1}{k_7 \cdot k_1} \cdot 10^5 = \frac{0,9793136 - 1,0340810}{0,9793136 \cdot 1,0340810} \cdot 10^5 = -5408,11$$
(7.5)

Bezogen auf den Zustand in dem alle Steuerstäbe eingefahren sind, ergeben sich folgende Werte (Gleichungen (7.6) bis (7.9)):

$$r_{3-4} = \frac{k_4 - k_3}{k_4 \cdot k_3} \cdot 10^5 = \frac{0,9714470 - 0,9659450}{0,9714470 \cdot 10,9659450} \cdot 10^5 = 586,34$$
(7.6)

$$r_{3-5} = \frac{k_5 - k_3}{k_5 \cdot k_3} \cdot 10^5 = \frac{0,9714270 - 0,9659450}{0,9714270 \cdot 10,9659450} \cdot 10^5 = 584,22$$
(7.7)

$$r_{3-6} = \frac{k_6 - k_3}{k_6 \cdot k_3} \cdot 10^5 = \frac{0,9714270 - 0,9659450}{0,9714270 \cdot 10,9659450} \cdot 10^5 = 584,22$$
(7.8)

$$r_{3-7} = \frac{k_7 - k_3}{k_7 \cdot k_3} \cdot 10^5 = \frac{0.9793136 - 0.9659450}{0.9793136 \cdot 10.9659450} \cdot 10^5 = 1413,23$$
(7.9)

Abbildung 7-10 zeigt die Gegenüberstellung der Reaktivitätswerte in Folge einer Reaktorschnellabschaltung mit Einfahren aller Steuerstäbe bis auf einen (Szenario 4; 5 und 6) bzw. zwei (Szenario 7). Die eingebrachte Reaktivität reicht bei weitem aus, um den Reaktor in einen unterkritischen Zustand zu überführen. Die Abbildung zeigt auch, dass die Werte der PSU und des FZK sehr eng beieinander liegen. Die Werte der UPISA fallen betragsmäßig etwas zu hoch aus [Bou06; Iva06].

Abbildung 7-10: Reaktivität 1

In Abbildung 7-11 ist dagegen die Reaktivität dargestellt, die sich ergibt, wenn ein (zwei) Steuerstab (Steuerstäbe) mit der (den) höchsten Abschaltreaktivität(en) ausgefahren wird (werden). Die angegeben Werte zeigen an, dass die Kritikalität zwar zunimmt, aber der Reaktor weiter unterkritisch bleibt, wie auch Abbildung 7-9 bestätigt.

Eine einfache Betrachtung (Gleichung (7.10)) zeigt, dass die Werte der Reaktivität in einen Bereich liegen der weit davon entfernt ist, den Reaktor in einen kritischen bzw. überkritischen Zustand zu überführen.

$$r_{\text{kritisch}} = \frac{k_{\text{kritisch}} - k_3}{k_{\text{kritisch}} \cdot k_3} \cdot 10^5 = \frac{1 - 0,965945}{1 \cdot 0,965945} \cdot 10^5 = 3525,56$$
(7.10)

Erst bei Überschreiten dieses Wertes wird der Reaktor wieder kritisch.

Abbildung 7-11: Reaktivität 2

Neben den Reaktivitäten und den radialen Leistungsverteilung sei an dieser Stelle auch die relative axiale Leistungsverteilung erwähnt. Abbildung 7-12 zeigt eine Gegenüberstellung der 7 Szenarien bezogen auf deren axiale Leistungsverteilung. Alle Verläufe weisen einen identischen Trend auf: Die höchsten Werte für die relativen

Abbildung 7-12: Vergleich der relativen axialen Leistungsverteilungen

axialen Leistungsverteilungen werden am oberen Ende der aktiven Zone erreicht. Dieser Verlauf erweist sich jedoch als nicht nachvollziehbar. Dem Idealfall nach sollte sich für die Leistungsverteilung ein kosinusförmiger Verlauf einstellen. Durch reaktorphysikalische Bedingungen (z.B. Abbrand) stellt sich dies aber nicht ein. Vielmehr ist eine gleichmäßigere Verteilung der Leistung in der Mitte zu erwarten. Der obere und untere Bereich sollten eher eine geringere Leistung aufweisen. Eine mögliche Ursache für die Abweichung liegt in den Wirkungsquerschnittsbibliotheken, die im Rahmen des Benchmarks an alle Teilnehmer übermittelt wurden. Der dargestellte Verlauf implizierte eine ungleichmäßige Anreicherung an Spaltstoff. Somit müssten die Brennstofftabletten in den oberen Bereich der Brennstäbe eine höhere Anreicherung aufweisen als im unteren Bereich. Unterstützt wird diese Vermutung durch die Tatsache, dass andere Teilnehmer des Benchmarks ebenfalls diese Verläufe ermittelten [Bou06; Koz06]. Deshalb werden zurzeit neue Wirkungsquerschittsbibliotheken für den Benchmark erstellt.

7.3 Simulation der postulierten Transiente

7.3.1 Ablauf und Randbedingungen

Die postulierte Transiente erfolgt bei 100 % Leistung (3000 MWe) und zum Ende des Operationszyklus (EOC). Der Bruch der Frischdampfleitung ereignet sich außerhalb des Containments, zwischen dem Dampferzeuger #4 und dem dazugehörigen Frischdampfisolationsventil (siehe Abbildung 7-13). Im Anschluss an dem Bruch kommt es zu einer Reaktorschnellabschaltung, wobei einer der Steuerstäbe mit der höchsten Abschaltreaktivität in seiner oberen Position stecken bleibt. Die Hauptkühlmittelpumpe im Loop #4 stellt den Betrieb ein um die Unterkühlung abzuschwächen. Die anderen drei Pumpen arbeiten weiter im Normalbetrieb. Dadurch stellt sich eine Rückströmung im betroffenen Strang ein. Des Weiteren wird ein Fehler in einem Ventil in der Speisewasserversorgung angenommen. Das Ventil, welches den Speisewasserdurchsatz reguliert, beginnt, zeitgleich zum Bruch in der FD-Leitung, sich zu öffnen. War dieses Ventil zu Beginn noch zu 70 % geöffnet, öffnet es sich nun vollkommen und verbleibt in dieser Position. Das FD-Isolationsventil beginnt sich zu schließen und 10 Sekunden nach der RESA wird eine Turbinenschnellabschaltung durchgeführt. Der Dampf wird dadurch direkt in den Kondensator geleitet. Die Temperaturen des Kühlmittels sinken dabei um bis zu 50 K.

Abbildung 7-13: Sekundärkreislauf des WWER-1000

In den folgenden zwei Abbildungen sind die Randbedingungen dargestellt. Zum einen die zeitabhängigen Verläufe der Temperaturen am Kühlmittel-Eintritt (Abbildung 7-14) und zum anderem die jeweiligen Massenströme in den vier Strängen (Abbildung 7-15).

Abbildung 7-14: Temperaturen am Kühlmitteleintritt

Abbildung 7-15: Massenströme am Kühlmitteleintritt

7.3.2 Stationäres Kernverhalten bei Volllast

Nach diesen Vorbetrachtungen kann nun die eigentliche Simulation durchgeführt werden. Bevor es zum Bruch in FD-Leitung kommt, befindet sich der Reaktor im stationären Zustand. Die Leistung des Reaktors beträgt 3000 MW_{th} und die Position der 10 Steuerstabgruppen ist in Tabelle 7-2 zu finden.

Steuerstabgruppe	Position
I	100 % ausgefahren
I	100 % ausgefahren
III	100 % ausgefahren
IV	100 % ausgefahren
V	100 % ausgefahren
VI	100 % ausgefahren
VII	100 % ausgefahren
VIII	100 % ausgefahren
IX	100 % ausgefahren
Х	80 % ausgefahren

Tabelle 7-2: Positionen der Steuerstabgruppen

Einige ausgewählte Betriebsparameter sind in der Tabelle 7-3 zusammengetragen. Dabei sind deutliche Übereinstimmungen zu den Referenzwerten fest zu stellen.

Parameter	Referenzwerte	TRACE
Leistung [MW]	3010	3000
Druck P2 [MPa]	15,842	15,800
Druck P4 [MPa]	15,700	15,700
Δp über Reaktor [MPa]	0,406	0,400
Massenstrom Reaktor [kg/s]	17824	17756
Temperatur KM-Eintritt #1 [K]	560,85	561,43
Temperatur KM-Eintritt #2 [K]	560,85	561,30
Temperatur KM-Eintritt #3 [K]	560,85	561,15
Temperatur KM-Eintritt #4 [K]	560,85	561,62
Temperatur KM-Austritt #1 [K]	591,55	589,15
Temperatur KM-Austritt #2 [K]	591,55	589,15
Temperatur KM-Austritt #3 [K]	591,55	589,10
Temperatur KM-Austritt #4 [K]	591,55	589,22

Tabelle 7-3: Betriebsparameter bei 100 % Leistung

Für den stationären Zustand ergaben sich eine axiale Leistungsverteilungen die der Abbildung 7-16 zu entnehmen ist.

Abbildung 7-16: Relatives axiales Leistungsprofil im stationären Zustand

Für das radiale Leistungsprofil ergab sich folgende Darstellung (Abbildung 7-17).

Abbildung 7-17: Relative radiale Leistungsverteilung im stationären Zustand

Der Wert für den Multiplikationsfaktor betrug $k_{eff} = 1,0011687$.

7.3.3 Zeitabhängiges Verhalten des RDB

Im Anschluss an die Bestimmung der stationären Parameter wurde der Bruch in der FD-Leitung eingeleitet. Auch hier erfolgt zu erst der Vergleich der Kühlmitteleintrittstemperaturen mit den Werten der Benchmarkspezifikation [Koe04]. Durch diesen Vergleich wird sichergestellt, dass die Simulation auf korrekte Art und Weise erfolgt. Sollte sich hier bereits Abweichungen ergeben ist dies ein Zeichen für eine inkonsistente Eingabe (Dies stellt sich z.B. bei einer inkorrekten Eingabe des Druckes ein). Alle vier Diagramme (Abbildung 7-18 bis Abbildung 7-21) zeigen, dass die experimentellen Verläufe¹ der Kühlmitteleintrittstemperaturen mit hoher Genauigkeit nachgebildet wurden.

Abbildung 7-18: Kühlmitteltemperaturen am Eintritt #1

¹ Es sei darauf hingewiesen, dass es sich um keine experimentellen Daten handelt, sondern um theoretisch ermittelte Werte für eine postulierte Transiente. Im weiteren Verlauf wir der Einfachheit halber der Begriff Experiment weiter verwendet.

Abbildung 7-19: Kühlmitteltemperaturen am Eintritt #2

Abbildung 7-20: Kühlmitteltemperaturen am Eintritt #3

Abbildung 7-21: Kühlmitteltemperaturen am Eintritt #4

Die in Abbildung 7-22 dargestellten Verläufe der Drücke am Kühlmittel-Eintritt zeigen zum einen, dass in allen 4 Loops der gleiche Druck herrscht und zum anderen, dass TRACE diese ebenfalls exakt nachbildet.

Abbildung 7-22: Drücke am Kühlmittel-Eintritt
Nach dem Bruch der FD-Leitung kommt es zu Reaktorschnellabschaltung. Die Abbildung 7-23 stellt die zeitliche Änderung der Leistung dar. Der rote Graph zeigt dabei den Verlauf der Leistung unter Einbeziehung der Nachzerfallswärme, währenddessen der schwarze Verlauf die Nachzerfallswärme nicht berücksichtigt. Im oberen Teil dieses Kapitels wurde darauf hingewiesen, dass es zur Reaktorschnellabschaltung sofort nach dem Bruch kommt. Somit kann kein Anstieg der Leistung beobachtet werden der sich ergibt wenn unterkühltes Kühlmittel in den Reaktorbzw. die aktive Zone eintritt.

Abbildung 7-23: Zeitlicher Verlauf der Reaktorleistung

Für zwei Zeitpunkte (t = 166 s und t = 600 s) wurde die relative axiale Leistungsverteilung aufgenommen und in der folgenden Abbildung 7-24 dargestellt.

Abbildung 7-24: Relative axiale Leistungsverteilung während der Transiente

Für die gleichen Zeitpunkte wurde auch das radiale Leistungsprofil erstellt. Abbildung 7-25 zeigt die Leistungsverteilung zum Zeitpunkt t = 166 s.

Abbildung 7-25: Relative radiale Leistungsverteilung zum Zeitpunkt t = 166 s

Für den Zeitpunkt t = 600 s ist das Leistungsprofil in Abbildung 7-26 dargestellt.

Abbildung 7-26: Relative radiale Leistungsverteilung zum Zeitpunkt t = 600 s

Entsprechend dem Verlauf der Reaktorleistung verhalten sich auch die Temperaturen an den Kühlmittel-Austritten (Abbildung 7-27). Mit der Reaktorschnellabschaltung sinken die Temperaturen um 65 – 70 K. Zu dem jetzigen Zeitpunkt ist es nicht möglich die Werte der Temperaturen am KM-Austritt zu vergleichen, da keine Ergebnisse von anderen Teilnehmern des Benchmarks vorliegen. Auch findet sich in der Benchmarkspezifikation [Koe04] kein Hinweis auf diese Temperaturen. Ähnlich dem Verlauf der Drücke am Kühlmittel-Eintritt verhalten sich die Drücke am Kühlmittel-Austritt (siehe Abbildung 7-28). Auch hier zeigt sich, dass TRACE diese Verläufe mit einer sehr hohen Genauigkeit reproduzieren kann.

Abbildung 7-27: Zeitliches Verhalten der Temperaturen an den Kühlmittel-Austritten

Abbildung 7-28: Drücke am Kühlmittel-Austritt

7.3.4 Diskussion der Ergebnisse

Ziel dieses Abschnittes ist es, die vorangegangenen Ergebnisse zu erläutern. Dabei werden vor allem auf die Besonderheiten hingewiesen. Eine vollständige Diskussion ist nicht möglich, da es nicht zu allen Ergebnissen Vergleichswerte bzw. Referenzen gibt. Unter zu Hilfenahme der Abbildung 7-29 sei hier der Ablauf der Transient und das Verhalten der Anlage erläutert. Durch den rapiden Druckabfall im Dampferzeuger #4 beginnt das Wasserinventar rasch zu Verdampfen. Dadurch verbessert sich der Wärmeübergang im Dampferzeuger, was ein Absinken der Temperatur am Kühlmittel-Eintritt zu folge hat (1). Nachdem die Hauptkühlmittelpumpe #4 den Betrieb eingestellt hat (2) kommt es zu Rückströmung in den Loop #4. Die Temperatur die am Kühlmittel-Eintritt #4 gemessen wird ist nun eine Mischungstemperatur aus den KM-Eintritten #1 und #3, da diese an den betroffenen Eintritt #4 angrenzen (3). Im weiteren Verlauf sinken die Kühlmitteltemperaturen der Stränge #1; 2 und 3 weiter ab (siehe Abbildung 7-18 bis Abbildung 7-20), da durch die RESA auch die intakten Dampferzeuger beeinflusst werden. Die Temperatur des Speisewassers sinkt von ca. 490 K (Normalbetrieb) auf ca. 440 K, weil die Speisewasservorwärmung unterbrochen wurde (4) und sorgt somit für die Unterkühlung des Kühlmittels.

Abbildung 7-29: Ablauf der Transiente am Beispiel der KM-Eintrittstemperatur #4

Durch die oben erwähnte Abschaltung der Hauptkühlmittelpumpe #4 kommt es neben den Rückströmungen auch zu Vermischungen des Kühlmittels (siehe Abbildung 7-30). Kühlmittel der Loops #1 und #3 strömen rückwärts durch den Loop #4 in den Dampferzeuger #4. Nachdem der Inhalt des DE #4 verdampft wurde, steigt die Temperatur im Loop #4 wieder an (siehe (5) in Abbildung 7-29).

Abbildung 7-30: Schematische Darstellung der Rückströmung in Loop #4

Neben den fehlenden Vergleichswerten, liegen auch keine genaueren Werte für die Sekundärseite (z.B. Druck) vor. Daher können die oben genannten Ausführungen nicht bestätigt werden. Dennoch kann behauptet werden, das TRACE das thermohydraulische Verhalten des Reaktors sehr gut nachbilden konnte.

Hauptaugenmerk bei dieser Anwendung lag auf der Kopplung von TRACE und PARCS. Dabei sollte sichergestellt werden, dass der Datenaustausch zwischen PARCS und TRACE funktioniert. In Abhängigkeit der thermohydraulischen Vorgänge berechnet PARCS die dazugehörigen neutronenphysikalischen Parameter. Um diese Verläufe zu realisieren erfordert es bestimmte Neutronenphysikalische Vorgänge, die im Weiteren diskutiert werden.

Da sich der Reaktor zum Zeitpunkt t = 0 s noch im stationären Zustand befindet ist die Leistungsverteilung noch gleichmäßig über den gesamten Kernquerschnitt (Abbildung 7-17). Dieses Bild der relativen radialen Leistungsverteilung ähnelt dem

Bild der Leistungsverteilung des Szenario 2 im Kapitel 7.2.2 (siehe Abbildung 7-3) sehr, da beide Zustände nahe dem kritischen Zustand sind. Im weiteren Verlauf der Transiente ergeben sich für die Leistung die Verteilungen die in den Abbildung 7-25 und Abbildung 7-26 dargestellt sind. In beiden Abbildungen ist eine deutliche Leistungsspitze zu erkennen. Für diese Spitze ist ein verklemmter Steuerstab verantwortlich.

Ein weiterer Sachverhalt ergibt sich direkt aus Abbildung 7-27. Als Folge der RESA sinkt die Temperatur in allen Strängen ab. Dadurch erreicht kühleres Wasser die aktive Zone. Dieses kühlere Wasser besitzt eine höher Dichte, was eine bessere Moderation der Neutronen zu Folge hat. Diese Eigenschaft sorgt dafür, dass die Reaktivität wieder ansteigt. Die zeitliche Entwicklung der Reaktivität ist der Abbildung 7-31 zu entnehmen. Es lassen sich zwei Sachverhalte aus dieser Abbildung ableiten. Erstens, das Maximum für den Wiederanstieg der Reaktivität liegt bei ca. 200 Sekunden. Zu diesen Zeitpunkt sind auch die Temperaturen an den Kühlmittel-Austritten am geringsten (siehe Abbildung 7-27). Zweitens, der Maximalwert der Reaktivität für den Wiederanstieg liegt bei ca. -5 \$. Das heißt, dass der Reaktor stets im unterkritischen Zustand ist. Erst bei überschreiten der Null \$ Grenze erfolgt ein Anstieg der Leistung (Return to Power). Es ist möglich, dass trotz Unterkritikalität die Leistung des Reaktors wieder steigt. Dies passiert bei sehr schneller Zufuhr von positiver Reaktivität. In Abbildung 7-27 liegt der Gradient für den Reaktivitätsanstieg bei > 2 \$/min. Dieser Wert reicht nicht aus um die Leistung zu erhöhen.

Abbildung 7-31: Verlauf der Reaktivität in Abhängigkeit vom zeitlichen Ablauf der Transiente

Nachdem die Temperatur wieder ansteigt sinkt die Reaktivität wieder ab und ist am Ende der Transiente bei ca. -7 \$.

Auch bei dieser Anwendung des 3D-Modells gibt es gute Übereinstimmungen zwischen den experimentellen und den berechneten Werten.

8 Schlussfolgerung und Ausblick

Ziel dieser Arbeit war die Nutzung des gekoppelten Programmsystems TRACE/ PARCS zur sicherheitstechnischen Untersuchung eines Druckwasserreaktors. Diese Programmsysteme gehören zu den derzeit aktuellsten Sicherheitsanalysetools. Die Methodik der Kopplung von Programmen, um eine umfangreichere Aussage zu erhalten, erfordert eine Qualifizierung durch geeignete Daten. Um speziell die Fähigkeiten von TRACE (3D-Thermohydraulik) und PARCS (3D-Neutronenkinetik) zu qualifizieren wurde eigens die Phase 2 des VVER-1000 Coolant Transient Benchmarks diesen und ähnlichen Programmsystemen gewidmet.

Nach der Beschreibung des Benchmarks und einen Überblick über die Aufgaben dieser Arbeit (Kapitel 1) folgte die Vorstellung des russischen Reaktortyps WWER-1000 (Kapitel 2). Die in den VVER-1000 Coolant Transient Benchmark enthaltenen Daten über den WWER-1000 dienen als Grundlage für diese Arbeit. Das Kapitel 2 enthält eine ausführliche Darstellung des WWER's und seiner Besonderheiten. Im Anschluss daran wurde das Programmsystem TRACE erläutert (Kapitel 3). Dabei wurden der Aufbau und die Struktur, sowie die Anwendungsmöglichkeiten aufgeführt. Im darauf folgenden Kapitel 4 wurde das Programmsystem PARCS vorgestellt. Auch hier wurden verschiedene Anwendungsmöglichkeiten genannt und der Aufbau kurz erläutert.

Nach dieser umfassenden Einführung in den WWR-1000 und die Programme TRACE und PARCS folgt die Entwicklung eines 3D-Modells des Reaktordruckbehälters und des vereinfachten Primärkreislaufes (Kapitel 5). Dabei wurde über die möglichen Herangehensweisen einer Modellierung informiert. Als ein Ergebnis des Kapitel 5 wurde ein Modell des RDB vorgestellt, welches über 30 axiale Levels, sechs radiale Ringe und sechs azimutale Sektoren verfügt. Damit ergaben sich 1080 Zellen die den RDB bilden. Für diese Zellen wurden mehrere Parameter berechnet, die die Zellen hinsichtlich ihrer volumetrischen Gestaltung charakterisieren. Mit diesen Parametern können die thermohydraulischen Bedingungen der Zelle bzw. des RDB ermittelt werden (z.B. Fluidgeschwindigkeit). Neben den thermohydraulischen wurden auch die neutronenphysikalischen Bedingungen wiedergegeben. Dieses 3D-Modell des RDB konnte nun in den Primärkreislauf integriert werden. Der PKL wurde vereinfacht dargestellt, da die zu untersuchenden Effekte sich auf den RDB beschränken. Ebenfalls erleichtert die Vereinfachung die Modellierung der Anlage. Nach der Entwicklung des 3D-Modells wurde dieses qualifiziert.

Mithilfe von Daten die während eines Kühlmittelvermischungsexperiments aufgezeichnet wurde, konnten für das 3D-Modell Rand- und Anfangsbedingungen definiert werden. Diese Bedingungen ermöglichen die Nachbildung des Experiments. Bei dem Vergleich der Werte die TRACE als Ergebnis lieferte und den Werten des Experiments ergaben sich gute Übereinstimmungen. Dadurch konnte das Modell positiv bewertet werden und gualifizierte sich somit für weitere Anwendungen. Das Kühlmittelvermischungsexperiment ist Gegenstand des Kapitel 6. Im Kapitel 7 wurde die weitere Anwendung des 3D-Modells beschrieben. War das Kühlmittelvermischungsexperiment ein reines Phänomen der Thermohydraulik, so ist die in Kapitel 7 beschriebene Unterkühlungstransiente sowohl ein thermohydraulisches als auch ein neutronenphysikalisches Phänomen. Um die Unterkühlungstransiente möglichst genau zu beschreiben bedurfte es einer Kopplung der Programme TRACE und PARCS. In einen ersten Schritt wurde die Kopplung der beiden Programme gualifiziert. Zu diesem Zweck wurden 7 verschiedene Szenarien definiert. Diese Szenarien zeichnen sich zum einen durch einen leistungslosen Zustand und zum anderen durch unterschiedliche Positionen von Steuerstäben aus. Dabei konnte gezeigt werden, dass die ermittelten Werte für die Multiplikationsfaktoren und Reaktivitäten mit Werten anderer Benchmarkteilnehmer übereinstimmten. Nach dieser Untersuchung erfolgte die Simulation des FD-Leitungsbruchs. Anhand der ermittelten Werte für die Temperaturen und die Reaktivität konnte das Verhalten des Kerns bzw. RDB beschrieben werden. Diese Werte konnten noch nicht mit Ergebnissen anderer Benchmarkteilnehmer verglichen werden.

Weitere detaillierte Untersuchungen, besonders im Bezug auf die thermohydraulischneutronenkinetische Wechselwirkung sind unabdingbar. Die nachstehende Auflistung gibt einen Überblick über weitere Bemühungen zur Validierung von TRACE/PARCS

- Abschluss des VVER-1000 Coolant Transient Benchmarks Phase 2 durch Bearbeitung der Aufgabe 3 (integrales Anlagenmodell).
- Ermittlung der optimalen Nodalisierung des RDB und des Kerns (z.B. verfeinerte Unterteilung der axialen Levels).
- Sensitivitätsuntersuchungen einzelner TRACE Komponenten zur Aussagefähigkeit gegenüber etablierten Systemcodes (z.B. RELAP).

 Einbeziehung von Unsicherheits- und Sensitivitätsmodellen zur Ermittlung der wichtigsten Modellparameter.

Schlussendlich kann behauptet werden, dass die vorgenommenen Untersuchungen gezeigt haben, dass das gekoppelte Programmsystem TRACE/PARCS ein hilfreiches Werkzeug zur Simulation von Betriebstransienten und Störfällen ist.

Literaturverzeichnis

- [Bel70] G. I. Bell, S. Glasstone, *Nuclear Reactor Theory*, Van Nostrand Reinhold Company, New York, 1970.
- [Böt06] M. Böttcher, *CFX-Analyse of a VVER1000-RPV*, OECD/DOE/CEA VVER-1000 Coolant Transient Benchmark Fourth Workshop (V1000-CT4), Pisa, Italien, April 2006.
- [Bou06] A. Bousbia Salah, C. Parisi und F. D'Auria, Analysis of the OECD/DOE/CEA VvER1000 CT-2 Benchmark Ex. 2 by RELAP5 – PARCS coupled Codes, OECD/DOE/CEA VVER-1000 Coolant Transient Benchmark - Fourth Workshop (V1000-CT4), Pisa, Italien, April 2006.
- [Bro95] U. Brockmeier, *Programmsysteme zur Analyse schwerer Störfälle mit Leichtwasserreaktoren*, Habilitationsschrift, Ruhr-Universität Bochum, 1995.
- [Cur90] F. Curca-Tivig, Modellierung der Dampf-Wasser-Gegenströmung in der Wiederauffüll- und Flutphase nach Kühlmittelverluststörfällen in Druckwasserreaktoren, Doktorarbeit, Universität Stuttgart, 1990.
- [Dow04] T. Downar, D. Lee, Y. Xu, T. Kozlowski und J. Staudenmier, *PARCS* v2.6 U.S. NRC Core Neutronics Simulator Therory Manual, Purdue University Scholl of Nuclear Engineering, 2004.
- [Dud76] J. J. Duderstadt und L. J. Hamilton, *Nuclear Reactor Analysis*, John Wiley & Sons, Inc., New York, 1976.
- [Gei94] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek und V. Sunderam, *PVM 3 User's Guide And Reference Manual*, Oak Ridge National Laboratory Bericht ORNL/TM-12187, September 1994.
- [Göh99] W. Göhler, *Formelsammlung Höhere Mathematik*, Verlag Harri Deutsch, Frankfurt, 14. Auflage, 1999.
- [GRS05] Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) mbH, Weiterentwicklung und Verifikation/Validierung von Rechenprogrammen für die Reaktorsicherheit, Bericht im Auftrage des Bundesministeriums für Wirtschaft und Technologie (BMWi), November 2005.
- [Gru03] G. Grunwald, Th. Höhne, H.-M. Prasser, K.-H. Richter, F.-P. Weiß, S. Kliem und U. Rohde, *Kühlmittelvermischung in Druckwasserreaktoren: Experimentelle Ausrüstung und Simulation der Vermischung*, Forschungszentrum Rossendorf Wissenschaftlich-Technischer Bericht FZR-367, Februar 2003.
- [Höh03] Th. Höhne, *Modellierung der Kühlmittelvermischung in Druckwasserreaktoren*, Dissertation, Technische Universität Dresden, Mai 2003.

- [ISL01] Information Systems Laboratories, Inc. *RELAP5/MOD3.3 Code Manual Volume I VIII*, U.S. Nuclear Regulatory Commission, Dezember 2001.
- [Ish75] M. Ishii, *Thermo-Fluid Dynamic Theory of Two-Phase Flow*, Collection de la Direction des Études et Recherches d'Électricité de France, 1975.
- [Iva04] B. Ivanov, K. Ivanov, P. Groudev, M. Pavlova und V. Hadjiev, VVER-1000 Coolant Transient Benchmark – Phase 1 (V1000CT-1) Volume I: Final Specifications, US Department of Energy, November 2004.
- [Iva06a] B. Ivanov und K. Ivanov, *TRACE/PARCS Modeling and Results for Exercise 2 of V1000CT-2*, OECD/DOE/CEA VVER-1000 Coolant Transient Benchmark - Fourth Workshop (V1000-CT4), Pisa, Italien, April 2006.
- [Iva06b] B. Ivanov und K. Ivanov, VVER-1000 Coolant Transient Benchmark: Phase I (V1000CT-1) Volume II: Summary Results of Exercise 1 Point Kinetics Plant Simulation, NEA Nuclear Science Committee NEA Committee on Safety of Nuclear Installations, 2006
- [Iva06c] K. Ivanov, *Coupled Thermo-hydraulics and Neutronics Simulations*, The 2006 Frédéric Joliot/Otto Hahn Summer School, Cadarache, Frankreich, August 2006.
- [Jon06] K. Jones, J. Rothe, W. Dunsford, *Symbolic Nuclear Analysis Package* (*SNAP) Tutorial*, TRACE Workshop Potomac, USA, März 2006.
- [Joo01] H. G. Joo, J. Y. Cho, J.S. Song, S. Q. Zee und T. J. Downar, *Multigroup Transient Calculation within the Framework of a Two-Group Hexagonal CMFD Formulation*, Mathematics and Computation, Supercomputing, Reactor Physics and Nuclear and Biological Applications, Salt Lake City, USA, September 2001.
- [Joo02] H. G. Joo, D. A. Barber, G. Jiang und T. J. Downar, *PARCS Purdue Advanced Reactor Core Simulator*, Purdue University Scholl of Nuclear Engineering, Juli 2002.
- [Koe04] N. Kolev, S. Aniel, E. Royer, U. Bieder, D. Popov and T. Topalov, VVER-1000 COOLANT TRANSIENT BENCHMARK (V1000CT) Volume II: Specifications of the VVER-1000 Vessel Mixing Problems, NEA Nuclear Science Committee, NEA Committee on Safety of Nuclear Installations, März 2004.
- [Koz02] Kozloduy NPP VVER-1000 Coupled Code Benchmark Problem, Revision 00, US DOE International Nuclear Safety Program, November 2002.
- [Koz06] Y. Kozmenkov, S. Kliem, T. Höhne, First Results of V1000CT2 Exercise 2 Simulation with DYN3D/ATHLET, OECD/DOE/CEA VVER-1000 Coolant Transient Benchmark - Fourth Workshop (V1000-CT4), Pisa, Italien, April 2006.

[Krü02]	G. Krüger, <i>Handbuch der Java-Programmierung</i> , Addison-Wesley, München, 3. Auflage, 2002.
[Lil95]	J. N. Lilligton, <i>Light Water Reactor Safety: The Development of Advanced Models and Codes for Light Water Reactor Safety Analysis</i> , Elsevier Science B.V., Amsterdam, 1995.
[Nas04]	L. Nastac, B. Q. Li, <i>Multiphase Phenomena and CFD Modeling and Si-</i> <i>mulation in Materials Processes</i> , TMS Annual Meeting, Charlotte, USA, März 2004.
[Oda04]	F. Odar, C. Murray, R. Shumway, M. Bolander, D. Barber und J. Mahaf- fy, <i>TRACE V4.0 User's Manual</i> , U.S. Nuclear Regulatory Commission, Januar 2004.
[Ott85]	K. O. Ott und R. J. Neuhold, <i>Nuclear Reactor Dynamics</i> , American Nuclear Society, La Grange Park, 1985.
[Par01]	C. Parisi, Master of Science Thesis, University of Pisa, Italy, 2001.
[San03]	V. H. Sánchez-Espinoza, <i>Steamline break transients</i> , The 2003 Frédéric Joliot/Otto Hahn Summer School, Karlsruhe, August 2003.
[San06]	V. H. Sánchez-Espinoza, W. Jäger, VV <i>ER-Reactor Applications</i> , Cour- se on Thermal Hydraulic System Codes: Use and Applications of the Program TRACE, Madrid, Spanien, Juni 2006.
[Smi79]	K. S. Smith, An Analytic Nodal Method For Solving The Two-Group, Multidimensional, Static and Transient Neutron Diffusion Equations, Master of Science Thesis, M.I.T., 1979.
[Spo00]	J. W. Spore, J. S. Elson, S. J. Jolly-Woodruff, T. D. Knight, JC. Lin, R. A. Nelson, K. O. Pasamehmetoglu, R. G. Steinke, C. Unal, J. H. Mahaf- fy und C. Murray, <i>TRAC-M/FORTRAN 90 (VERSION 3.0) THEORY</i> <i>MANUAL</i> , Los Alamos National Laboratory Bericht LA-UR-00-910, Juli 2000.
[Tom89]	C. E. Tomlinson, <i>Nuclear Power Plant Thermodynamics and Heat Transfer</i> , Iowa State Press, 1989.
[Thu83]	M. J. Thurgood, J. M. Cuta, A. S. Koontz und J. M. Kelly, <i>COBRA/TRAC</i> – <i>A Thermal-hydraulics Code for Transient Analysis of Nuclear Reactor Vessels and Primary Coolant Systems: User's Manual</i> , U.S. Nuclear Regulatory Commission, März 1983.
[www1]	http://www.personal.psu.edu/jhm/470/lectures/1.html (20.08.2006)

Eidesstattliche Erklärung

Ich erkläre hiermit an Eides Statt, dass ich die vorliegende Arbeit selbstständig und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe; die aus fremden Quellen direkt oder indirekt übernommenen Gedanken sind als solche kenntlich gemacht.

Die Arbeit wurde bisher in gleicher oder ähnlicher Form keiner anderen Prüfungskommission vorgelegt und auch nicht veröffentlicht.

Eggenstein-Leopoldshafen, 26.09.2006 Ort, Datum

Unterschrift (Vor- und Nachname)

A Randbedingungen für die Kühlmittelvermischung

Zeit [s]	T [K]	Zeit [s]	T [K]	Zeit [s]	T [K] Zeit [T [K]
0	541,72	528	554,60	1056	555,35	1584	555,35
12	541,85	540	554,35	1068	555,10	1596	555,47
24	541,85	552	554,60	1080	555,60	1608	555,60
36	541,97	564	554,60	1092	555,10	1620	555,60
48	541,97	576	554,22	1104	555,60	1632	555,60
60	541,72	588	554,35	1116	555,35	1644	555,47
72	541,97	600	554,35	1128	555,47	1656	555,60
84	542,85	612	554,47	1140	554,97	1668	555,85
96	543,85	624	554,72	1152	555,35	1680	555,85
108	544,97	636	554,85	1164	555,35	1692	555,60
120	545,72	648	554,72	1176	555,47	1704	555,85
132	546,22	660	554,72	1188	555,47	1716	555,60
144	546,85	672	554,85	1200	555,60	1728	555,60
156	547,72	684	554,97	1212	555,60	1740	555,47
168	548,22	696	554,97	1224	555,60	1752	555,97
180	548,85	708	554,97	1236	555,97	1764	555,72
192	549,85	720	554,85	1248	555,60	1776	555,72
204	550,22	732	554,85	1260	555,60	1788	555,85
216	550,47	744	554,97	1272	555,60	1800	555,47
228	550,85	756	554,97	1284	555,47	1812	555,47
240	551,22	768	555,22	1296	555,60	1824	555,47
252	551,47	780	554,97	1308	555,60		
264	551,47	792	555,22	1320	555,60		
276	551,85	804	555,10	1332	555,47		
288	551,97	816	554,97	1344	555,35		
300	552,35	828	555,22	1356	555,35		
312	552,85	840	555,10	1368	555,35		
324	552,97	852	555,10	1380	555,35		
336	552,97	864	554,97	1392	555,35		
348	553,22	876	554,85	1404	555,35		
360	553,35	888	555,10	1416	555,60		
372	553,47	900	555,10	1428	555,47		
384	553,72	912	554,97	1440	555,60		
396	553,85	924	554,97	1452	555,10		
408	553,47	936	555,22	1464	555,22		
420	554,10	948	555,22	1476	555,35		
432	554,10	960	555,10	1488	555,35		
444	553,97	972	555,35	1500	555,47		
456	554,22	984	555,35	1512	555,35		
468	554,47	996	555,60	1524	555,47		
480	554,35	1008	555,60	1536	555,47		
492	554,35	1020	555,60	1548	555,10		
504	554,60	1032	555,60	1560	555,47		
516	554,60	1044	555,35	1572	555,35		

Tabelle A-1: Kühlmitteleintrittstemperatur für Strang #1

Zeit [s]	T [K]						
0	541,65	528	543,03	1056	543,28	1584	543,15
12	542,28	540	542,78	1068	543,03	1596	543,28
24	541,85	552	543,03	1080	542,90	1608	543,28
36	541,85	564	542,78	1092	543,03	1620	543,15
48	541,85	576	542,90	1104	542,90	1632	543,03
60	541,85	588	542,90	1116	543,03	1644	543,03
72	541,85	600	543,03	1128	543,03	1656	542,90
84	541,53	612	542,53	1140	542,90	1668	543,03
96	541,53	624	542,78	1152	543,15	1680	543,03
108	541,65	636	542,53	1164	543,03	1692	543,15
120	541,90	648	542,53	1176	543,03	1704	543,03
132	541,90	660	543,15	1188	543,15	1716	542,90
144	541,90	672	543,03	1200	543,28	1728	542,90
156	542,40	684	542,90	1212	543,15	1740	542,90
168	542,53	696	542,78	1224	543,03	1752	543,15
180	542,53	708	543,03	1236	543,28	1764	542,90
192	542,65	720	542,78	1248	542,90	1776	543,03
204	542,90	732	542,78	1260	542,90	1788	543,15
216	542,90	744	542,90	1272	542,65	1800	543,28
228	542,90	756	542,90	1284	543,03	1812	543,03
240	542,90	768	542,65	1296	543,03	1824	543,28
252	543,28	780	542,90	1308	542,90		
264	543,15	792	542,90	1320	543,03		
276	543,15	804	542,90	1332	542,90		
288	543,03	816	542,90	1344	542,90		
300	543,28	828	542,90	1356	543,15		
312	543,28	840	542,65	1368	543,28		
324	543,28	852	543,15	1380	543,03		
336	543,28	864	543,03	1392	543,15		
348	543,15	876	542,90	1404	543,15		
360	543,03	888	542,90	1416	543,03		
372	543,03	900	542,90	1428	543,28		
384	542,90	912	542,90	1440	543,28		
396	543,28	924	543,28	1452	543,28		
408	542,90	936	542,90	1464	543,28		
420	542,90	948	543,15	1476	542,90		
432	542,78	960	542,90	1488	543,03		
444	542,65	972	542,78	1500	543,03		
456	543,03	984	542,90	1512	543,28		
468	542,90	996	543,03	1524	543,03		
480	542,53	1008	542,78	1536	543,28		
492	542,78	1020	542,78	1548	543,15		
504	542,90	1032	542,78	1560	543,15		
516	542,90	1044	542,90	1572	543,28		

 Tabelle A-2: Kühlmitteleintrittstemperatur für Strang #2

Zeit [s]	T [K]						
0	541,88	528	542,13	1056	542,13	1584	542,38
12	541,88	540	542,00	1068	542,00	1596	542,25
24	542,00	552	542,00	1080	542,13	1608	542,25
36	541,88	564	542,00	1092	542,38	1620	542,50
48	542,00	576	542,00	1104	542,13	1632	542,50
60	541,75	588	541,88	1116	542,13	1644	542,25
72	541,88	600	542,00	1128	542,13	1656	542,25
84	541,63	612	542,13	1140	542,25	1668	542,38
96	541,50	624	542,13	1152	542,13	1680	542,13
108	541,63	636	542,00	1164	542,25	1692	542,25
120	541,75	648	542,00	1176	542,13	1704	542,50
132	541,63	660	541,88	1188	542,25	1716	542,25
144	541,75	672	542,00	1200	542,25	1728	542,38
156	541,88	684	542,00	1212	542,25	1740	542,25
168	542,38	696	542,00	1224	542,13	1752	542,38
180	542,00	708	541,88	1236	542,25	1764	542,13
192	542,38	720	541,88	1248	542,13	1776	542,50
204	542,25	732	541,88	1260	542,25	1788	542,50
216	542,50	744	542,00	1272	542,13	1800	542,38
228	542,25	756	542,00	1284	542,13	1812	542,13
240	542,25	768	541,88	1296	542,13	1824	542,50
252	542,25	780	542,00	1308	542,13		
264	542,63	792	542,13	1320	542,13		
276	542,38	804	542,00	1332	542,13		
288	542,50	816	542,13	1344	542,13		
300	542,50	828	542,13	1356	542,25		
312	542,38	840	542,00	1368	542,25		
324	542,38	852	542,00	1380	542,13		
336	542,25	864	542,13	1392	542,50		
348	542,50	876	542,13	1404	542,25		
360	542,38	888	542,00	1416	542,38		
372	542,50	900	542,38	1428	542,50		
384	542,13	912	541,88	1440	542,25		
396	542,13	924	542,13	1452	542,25		
408	542,25	936	542,13	1464	542,25		
420	542,13	948	542,00	1476	542,38		
432	542,13	960	542,13	1488	542,38		
444	542,13	972	542,38	1500	542,25		
456	542,00	984	542,13	1512	542,38		
468	542,50	996	542,13	1524	542,38		
480	542,00	1008	542,00	1536	542,50		
492	542,13	1020	542,00	1548	542,25		
504	542,00	1032	542,13	1560	542,38		
516	542.00	1044	542.13	1572	542.38		

Tabelle A-3: Kühlmitteleintrittstemperatur für Strang #3

Zeit [s]	T [K]						
0	541,85	528	542,22	1056	542,22	1584	542,60
12	541,85	540	542,22	1068	542,22	1596	542,35
24	541,85	552	542,22	1080	542,47	1608	542,60
36	541,85	564	542,22	1092	542,10	1620	542,60
48	541,85	576	542,10	1104	542,22	1632	542,35
60	541,85	588	542,10	1116	542,35	1644	542,35
72	541,60	600	542,22	1128	542,22	1656	542,60
84	541,60	612	541,97	1140	542,22	1668	542,60
96	541,60	624	542,22	1152	542,47	1680	542,60
108	541,60	636	542,22	1164	542,35	1692	542,35
120	541,60	648	542,10	1176	542,60	1704	542,47
132	541,47	660	542,10	1188	542,60	1716	542,60
144	541,60	672	541,97	1200	542,35	1728	542,47
156	541,85	684	541,97	1212	542,60	1740	542,60
168	542,10	696	542,22	1224	542,22	1752	542,35
180	542,10	708	541,97	1236	542,22	1764	542,60
192	542,22	720	541,97	1248	542,22	1776	542,35
204	542,35	732	541,97	1260	542,35	1788	542,35
216	542,35	744	541,97	1272	542,35	1800	542,47
228	542,22	756	541,85	1284	542,35	1812	542,35
240	542,35	768	542,22	1296	542,22	1824	542,35
252	542,60	780	542,22	1308	542,22		
264	542,60	792	542,22	1320	542,22		
276	542,85	804	541,97	1332	542,35		
288	542,72	816	542,22	1344	542,47		
300	542,72	828	542,10	1356	542,35		
312	542,72	840	542,22	1368	542,35		
324	542,60	852	542,22	1380	542,47		
336	542,72	864	542,22	1392	542,35		
348	542,72	876	542,47	1404	542,35		
360	542,35	888	542,22	1416	542,47		
372	542,72	900	542,22	1428	542,35		
384	542,35	912	542,22	1440	542,35		
396	542,60	924	542,22	1452	542,35		
408	542,22	936	542,22	1464	542,35		
420	542,22	948	542,22	1476	542,47		
432	542,22	960	542,22	1488	542,47		
444	542,22	972	542,35	1500	542,35		
456	542,22	984	542,22	1512	542,60		
468	542,22	996	542,22	1524	542,60		
480	542,10	1008	542,22	1536	542,35		
492	542,22	1020	542,22	1548	542,22		
504	542,22	1032	542,22	1560	542,47		
516	542,47	1044	542,22	1572	542,35		

 Tabelle A-4: Kühlmitteleintrittstemperatur für Strang #4

Zeit [s]	p [MPa]						
0	15,97	528	15,98	1056	15,97	1584	15,97
12	15,98	540	15,98	1068	15,97	1596	15,97
24	15,99	552	15,98	1080	15,97	1608	15,97
36	16,00	564	15,98	1092	15,97	1620	15,97
48	16,01	576	15,98	1104	15,97	1632	15,97
60	16,02	588	15,98	1116	15,97	1644	15,97
72	16,03	600	15,98	1128	15,97	1656	15,97
84	16,05	612	15,98	1140	15,97	1668	15,97
96	16,06	624	15,98	1152	15,97	1680	15,97
108	16,07	636	15,97	1164	15,97	1692	15,97
120	16,08	648	15,97	1176	15,97	1704	15,97
132	16,09	660	15,97	1188	15,97	1716	15,97
144	16,10	672	15,97	1200	15,97	1728	15,97
156	16,11	684	15,97	1212	15,97	1740	15,97
168	16,12	696	15,97	1224	15,97	1752	15,97
180	16,11	708	15,97	1236	15,97	1764	15,97
192	16,10	720	15,97	1248	15,97	1776	15,97
204	16,09	732	15,97	1260	15,97	1788	15,97
216	16,08	744	15,97	1272	15,97	1800	15,97
228	16,07	756	15,97	1284	15,97	1812	15,97
240	16,06	768	15,97	1296	15,97	1824	15,97
252	16,05	780	15,97	1308	15,97		
264	16,04	792	15,97	1320	15,97		
276	16,03	804	15,97	1332	15,97		
288	16,02	816	15,97	1344	15,97		
300	16,01	828	15,97	1356	15,97		
312	16,00	840	15,97	1368	15,97		
324	15,99	852	15,97	1380	15,97		
336	15,98	864	15,97	1392	15,97		
348	15,98	876	15,97	1404	15,97		
360	15,98	888	15,97	1416	15,97		
372	15,98	900	15,97	1428	15,97		
384	15,98	912	15,97	1440	15,97		
396	15,98	924	15,97	1452	15,97		
408	15,98	936	15,97	1464	15,97		
420	15,98	948	15,97	1476	15,97		
432	15,98	960	15,97	1488	15,97		
444	15,98	972	15,97	1500	15,97		
456	15,98	984	15,97	1512	15,97		
468	15,98	996	15,97	1524	15,97		
480	15,98	1008	15,97	1536	15,97		
492	15,98	1020	15,97	1548	15,97		
504	15,98	1032	15,97	1560	15,97		
516	15.98	1044	15.97	1572	15.97		

Tabelle A-5: Druck am Reaktoraustritt (Strang #1 - #4)

Zeit [s]	G [kg/s]						
0	4737,00	528	4576,41	1056	4568,55	1584	4566,74
12	4729,14	540	4576,18	1068	4568,51	1596	4566,70
24	4721,29	552	4575,96	1080	4568,47	1608	4566,66
36	4713,43	564	4575,73	1092	4568,42	1620	4566,62
48	4705,57	576	4575,51	1104	4568,38	1632	4566,58
60	4697,71	588	4575,29	1116	4568,34	1644	4566,53
72	4689,86	600	4575,06	1128	4568,30	1656	4566,49
84	4682,00	612	4574,84	1140	4568,26	1668	4566,45
96	4674,14	624	4574,61	1152	4568,22	1680	4566,41
108	4666,29	636	4574,39	1164	4568,18	1692	4566,37
120	4658,43	648	4574,16	1176	4568,14	1704	4566,33
132	4650,57	660	4573,94	1188	4568,10	1716	4566,29
144	4642,71	672	4573,71	1200	4568,05	1728	4566,25
156	4634,86	684	4573,49	1212	4568,01	1740	4566,21
168	4627,00	696	4573,27	1224	4567,97	1752	4566,16
180	4623,64	708	4573,04	1236	4567,93	1764	4566,12
192	4620,29	720	4572,82	1248	4567,89	1776	4566,08
204	4616,93	732	4572,59	1260	4567,85	1788	4566,04
216	4613,57	744	4572,37	1272	4567,81	1800	4566,00
228	4610,21	756	4572,14	1284	4567,77	1812	4566,00
240	4606,86	768	4571,92	1296	4567,73	1824	4566,00
252	4603,50	780	4571,69	1308	4567,68		
264	4600,14	792	4571,47	1320	4567,64		
276	4596,79	804	4571,24	1332	4567,60		
288	4593,43	816	4571,02	1344	4567,56		
300	4590,07	828	4570,80	1356	4567,52		
312	4586,71	840	4570,57	1368	4567,48		
324	4583,36	852	4570,35	1380	4567,44		
336	4580,00	864	4570,12	1392	4567,40		
348	4579,78	876	4569,90	1404	4567,36		
360	4579,55	888	4569,67	1416	4567,32		
372	4579,33	900	4569,45	1428	4567,27		
384	4579,10	912	4569,22	1440	4567,23		
396	4578,88	924	4569,00	1452	4567,19		
408	4578,65	936	4568,96	1464	4567,15		
420	4578,43	948	4568,92	1476	4567,11		
432	4578,20	960	4568,88	1488	4567,07		
444	4577,98	972	4568,84	1500	4567,03		
456	4577,76	984	4568,79	1512	4566,99		
468	4577,53	996	4568,75	1524	4566,95		
480	4577,31	1008	4568,71	1536	4566,90		
492	4577,08	1020	4568,67	1548	4566,86		
504	4576,86	1032	4568,63	1560	4566,82	4566,82	
516	4576,63	1044	4568,59	1572	4566,78		

Tabelle A-6: Kühlmitteldurchsatz Kalter Strang #1

Zeit [s]	G [kg/s]						
0	4718,00	528	4680,69	1056	4677,70	1584	4676,49
12	4716,50	540	4680,61	1068	4677,67	1596	4676,47
24	4715,00	552	4680,53	1080	4677,64	1608	4676,44
36	4713,50	564	4680,45	1092	4677,62	1620	4676,41
48	4712,00	576	4680,37	1104	4677,59	1632	4676,38
60	4710,50	588	4680,29	1116	4677,56	1644	4676,36
72	4709,00	600	4680,20	1128	4677,53	1656	4676,33
84	4707,50	612	4680,12	1140	4677,51	1668	4676,30
96	4706,00	624	4680,04	1152	4677,48	1680	4676,27
108	4704,50	636	4679,96	1164	4677,45	1692	4676,25
120	4703,00	648	4679,88	1176	4677,42	1704	4676,22
132	4701,50	660	4679,80	1188	4677,40	1716	4676,19
144	4700,00	672	4679,71	1200	4677,37	1728	4676,16
156	4698,50	684	4679,63	1212	4677,34	1740	4676,14
168	4697,00	696	4679,55	1224	4677,32	1752	4676,11
180	4695,93	708	4679,47	1236	4677,29	1764	4676,08
192	4694,86	720	4679,39	1248	4677,26	1776	4676,05
204	4693,79	732	4679,31	1260	4677,23	1788	4676,03
216	4692,71	744	4679,22	1272	4677,21	1800	4676,00
228	4691,64	756	4679,14	1284	4677,18	1812	4676,00
240	4690,57	768	4679,06	1296	4677,15	1824	4676,00
252	4689,50	780	4678,98	1308	4677,12		
264	4688,43	792	4678,90	1320	4677,10		
276	4687,36	804	4678,82	1332	4677,07		
288	4686,29	816	4678,73	1344	4677,04		
300	4685,21	828	4678,65	1356	4677,01		
312	4684,14	840	4678,57	1368	4676,99		
324	4683,07	852	4678,49	1380	4676,96		
336	4682,00	864	4678,41	1392	4676,93		
348	4681,92	876	4678,33	1404	4676,90		
360	4681,84	888	4678,24	1416	4676,88		
372	4681,76	900	4678,16	1428	4676,85		
384	4681,67	912	4678,08	1440	4676,82		
396	4681,59	924	4678,00	1452	4676,79		
408	4681,51	936	4677,97	1464	4676,77		
420	4681,43	948	4677,95	1476	4676,74		
432	4681,35	960	4677,92	1488	4676,71		
444	4681,27	972	4677,89	1500	4676,68		
456	4681,18	984	4677,86	1512	4676,66		
468	4681,10	996	4677,84	1524	4676,63		
480	4681,02	1008	4677,81	1536	4676,60		
492	4680,94	1020	4677,78	1548	4676,58		
504	4680,86	1032	4677,75	1560	4676,55		
516	4680.78	1044	4677.73	1572	4676.52		

Tabelle A-7: Kühlmitteldurchsatz Kalter Strang #2

Zeit [s]	G [kg/s]	Zeit [s]	G [kg/s]	Zeit [s]	G [kg/s] Zeit [s]		G [kg/s]
0	4682,00	528	4678,19	1056	4674,37	1584	4670,56
12	4681,91	540	4678,10	1068	4674,29	1596	4670,47
24	4681,83	552	4678,01	1080	4674,20	1608	4670,39
36	4681,74	564	4677,93	1092	4674,11	1620	4670,30
48	4681,65	576	4677,84	1104	4674,03	1632	4670,21
60	4681,57	588	4677,75	1116	4673,94	1644	4670,13
72	4681,48	600	4677,67	1128	4673,85	1656	4670,04
84	4681,39	612	4677,58	1140	4673,77	1668	4669,95
96	4681,31	624	4677,49	1152	4673,68	1680	4669,87
108	4681,22	636	4677,41	1164	4673,59	1692	4669,78
120	4681,13	648	4677,32	1176	4673,51	1704	4669,69
132	4681,05	660	4677,23	1188	4673,42	1716	4669,61
144	4680,96	672	4677,15	1200	4673,33	1728	4669,52
156	4680,87	684	4677,06	1212	4673,25	1740	4669,43
168	4680,79	696	4676,97	1224	4673,16	1752	4669,35
180	4680,70	708	4676,89	1236	4673,07	1764	4669,26
192	4680,61	720	4676,80	1248	4672,99	1776	4669,17
204	4680,53	732	4676,71	1260	4672,90	1788	4669,09
216	4680,44	744	4676,63	1272	4672,81	1800	4669,00
228	4680,35	756	4676,54	1284	4672,73	1812	4669,00
240	4680,27	768	4676,45	1296	4672,64	1824	4669,00
252	4680,18	780	4676,37	1308	4672,55		
264	4680,09	792	4676,28	1320	4672,47		
276	4680,01	804	4676,19	1332	4672,38		
288	4679,92	816	4676,11	1344	4672,29		
300	4679,83	828	4676,02	1356	4672,21		
312	4679,75	840	4675,93	1368	4672,12		
324	4679,66	852	4675,85	1380	4672,03		
336	4679,57	864	4675,76	1392	4671,95		
348	4679,49	876	4675,67	1404	4671,86		
360	4679,40	888	4675,59	1416	4671,77		
372	4679,31	900	4675,50	1428	4671,69		
384	4679,23	912	4675,41	1440	4671,60		
396	4679,14	924	4675,33	1452	4671,51		
408	4679,05	936	4675,24	1464	4671,43		
420	4678,97	948	4675,15	1476	4671,34		
432	4678,88	960	4675,07	1488	4671,25		
444	4678,79	972	4674,98	1500	4671,17		
456	4678,71	984	4674,89	1512	4671,08		
468	4678,62	996	4674,81	1524	4670,99		
480	4678,53	1008	4674,72	1536	4670,91		
492	4678,45	1020	4674,63	1548	4670,82		
504	4678,36	1032	4674,55	1560	4670,73		
516	4678,27	1044	4674,46	1572	4670,65		

Tabelle A-8: Kühlmitteldurchsatz Kalter Strang #3

Zeit [s]	G [kg/s]	Zeit [s]	G [kg/s]	Zeit [s]	Zeit [s] G [kg/s] Zeit		G [kg/s]
0	4834,00	528	4829,60	1056	4825,20	1584	4820,80
12	4833,90	540	4829,50	1068	4825,10	1596	4820,70
24	4833,80	552	4829,40	1080	4825,00	1608	4820,60
36	4833,70	564	4829,30	1092	4824,90	1620	4820,50
48	4833,60	576	4829,20	1104	4824,80	1632	4820,40
60	4833,50	588	4829,10	1116	4824,70	1644	4820,30
72	4833,40	600	4829,00	1128	4824,60	1656	4820,20
84	4833,30	612	4828,90	1140	4824,50	1668	4820,10
96	4833,20	624	4828,80	1152	4824,40	1680	4820,00
108	4833,10	636	4828,70	1164	4824,30	1692	4819,90
120	4833,00	648	4828,60	1176	4824,20	1704	4819,80
132	4832,90	660	4828,50	1188	4824,10	1716	4819,70
144	4832,80	672	4828,40	1200	4824,00	1728	4819,60
156	4832,70	684	4828,30	1212	4823,90	1740	4819,50
168	4832,60	696	4828,20	1224	4823,80	1752	4819,40
180	4832,50	708	4828,10	1236	4823,70	1764	4819,30
192	4832,40	720	4828,00	1248	4823,60	1776	4819,20
204	4832,30	732	4827,90	1260	4823,50	1788	4819,10
216	4832,20	744	4827,80	1272	4823,40	1800	4819,00
228	4832,10	756	4827,70	1284	4823,30	1812	4819,00
240	4832,00	768	4827,60	1296	4823,20	1824	4819,00
252	4831,90	780	4827,50	1308	4823,10		
264	4831,80	792	4827,40	1320	4823,00		
276	4831,70	804	4827,30	1332	4822,90		
288	4831,60	816	4827,20	1344	4822,80		
300	4831,50	828	4827,10	1356	4822,70		
312	4831,40	840	4827,00	1368	4822,60		
324	4831,30	852	4826,90	1380	4822,50		
336	4831,20	864	4826,80	1392	4822,40		
348	4831,10	876	4826,70	1404	4822,30		
360	4831,00	888	4826,60	1416	4822,20		
372	4830,90	900	4826,50	1428	4822,10		
384	4830,80	912	4826,40	1440	4822,00		
396	4830,70	924	4826,30	1452	4821,90		
408	4830,60	936	4826,20	1464	4821,80		
420	4830,50	948	4826,10	1476	4821,70		
432	4830,40	960	4826,00	1488	4821,60		
444	4830,30	972	4825,90	1500	4821,50		
456	4830,20	984	4825,80	1512	4821,40		
468	4830,10	996	4825,70	1524	4821,30		
480	4830,00	1008	4825,60	1536	4821,20		
492	4829,90	1020	4825,50	1548	4821,10		
504	4829,80	1032	4825,40	1560	4821,00		
516	4829.70	1044	4825.30	1572	4820.90		

Tabelle A-9: Kühlmitteldurchsatz Kalter Strang #4

B Randbedingungen für die Unterkühlungstransiente

Zeit	T [1/]								
[s]	ι[K]								
0	561,43	55	540,61	184	512,58	313	524,73	515	539,96
1	561,35	58	536,86	187	512,65	316	525,14	520	540,24
2	561,24	61	535,43	190	512,84	319	525,52	525	540,52
3	561,21	64	534,08	193	513,36	321	525,76	530	540,80
4	561,14	67	532,68	196	513,77	324	526,10	535	541,07
5	560,96	70	531,41	199	514,12	325	526,21	540	541,34
6	560,83	73	530,62	202	514,37	330	526,74	545	541,62
7	560,69	76	529,30	205	514,58	335	527,25	550	541,89
8	560,50	79	528,52	208	514,75	340	527,74	555	542,15
9	560,16	82	527,34	211	514,92	345	528,22	560	542,42
10	559,36	85	526,32	214	515,18	350	528,69	565	542,66
11	558,85	88	525,62	217	515,56	355	529,14	570	542,92
12	558,00	91	524,76	220	516,15	360	529,57	575	543,16
13	557,08	94	523,87	223	516,73	365	530,00	580	543,41
14	556,48	97	523,06	226	517,22	370	530,41	585	543,66
15	556,24	100	522,27	229	517,69	375	530,81	590	543,90
16	556,35	103	521,53	232	518,04	380	531,20	595	544,14
17	556,70	106	520,79	235	518,35	385	531,59	600	544,38
18	557,11	109	519,95	238	518,63	390	531,97		
19	557,58	112	519,30	241	518,89	395	532,34		
20	557,99	115	518,59	244	519,12	400	532,71		
21	558,16	118	517,90	247	519,34	405	533,07		
22	558,25	121	517,15	250	519,54	410	533,42		
23	558,23	124	516,35	253	519,74	415	533,77		
24	558,14	127	515,61	256	519,93	420	534,11		
25	557,88	130	514,95	259	520,11	425	534,45		
26	557,53	133	514,44	262	520,28	430	534,79		
27	557,22	136	514,04	265	520,45	435	535,12		
28	556,74	139	513,72	268	520,60	440	535,44		
29	556,05	142	513,37	271	520,75	445	535,77		
30	555,85	145	512,94	274	520,89	450	536,08		
31	555,41	148	512,73	277	521,02	455	536,40		
32	555,12	151	512,67	280	521,17	460	536,71		
33	554,55	154	512,68	283	521,27	465	537,02		
34	554,11	157	512,65	286	521,41	470	537,33		
35	553,63	160	512,42	289	521,50	475	537,63		
36	553,51	163	512,17	292	521,62	480	537,93		
38	552,02	166	512,05	295	521,76	485	538,23		
40	550,39	169	512,09	298	522,02	490	538,52		
43	547,42	172	512,29	301	522,47	495	538,81		
46	545,05	175	512,55	304	523,07	500	539,10		
49	542,61	178	512,61	307	523,67	505	539,39		
52	540,61	181	512,61	310	524,27	510	539,68		

Tabelle B-1: Kühlmitteleintrittstemperatur für Strang #1

Zeit	т [К]								
[S]		[S]		[S]	 				
0	561,30	55	552,71	184	528,45	313	528,33	515	541,05
1	561,23	58	552,24	187	528,08	316	528,49	520	541,32
2	561,11	61	551,93	190	527,86	319	528,67	525	541,59
3	561,09	64	551,59	193	527,54	321	528,80	530	541,85
4	561,01	67	551,19	196	527,32	324	528,98	535	542,12
5	560,79	70	550,75	199	527,09	325	529,05	540	542,38
6	560,63	73	550,43	202	526,89	330	529,38	545	542,64
/	560,44	76	549,89	205	526,70	335	529,72	550	542,90
8	560,24	79	549,58	208	526,54	340	530,07	555	543,16
9	559,90	82	549,05	211	526,38	345	530,42	560	543,41
10	559,16	85	548,47	214	526,26	350	530,77	565	543,65
11	558,69	88	548,03	217	526,19	355	531,13	570	543,89
12	557,90	91	547,41	220	526,12	360	531,48	575	544,13
13	557,05	94	546,73	223	526,08	365	531,84	580	544,37
14	556,48	97	546,07	226	526,05	370	532,19	585	544,61
15	556,26	100	545,39	229	526,03	375	532,54	590	544,84
16	556,39	103	544,74	232	526,04	380	532,89	595	545,08
17	556,78	106	544,05	235	526,07	385	533,23	600	545,31
18	557,26	109	543,26	238	526,11	390	533,57		
19	557,80	112	542,63	241	526,17	395	533,91		
20	558,30	115	541,91	244	526,22	400	534,24		
21	558,53	118	541,21	247	526,29	405	534,57		
22	558,66	121	540,44	250	526,36	410	534,90		
23	558,66	124	539,64	253	526,43	415	535,22		
24	558,54	127	538,92	256	526,51	420	535,54		
25	558,16	130	538,24	259	526,59	425	535,85		
26	557,66	133	537,59	262	526,67	430	536,16		
27	557,24	136	536,91	265	526,75	435	536,47		
28	556,67	139	536,23	268	526,83	440	536,78		
29	555,98	142	535,57	271	526,91	445	537,08		
30	555,82	145	534,79	274	527,00	450	537,38		
31	555,58	148	534,16	277	527,08	455	537,68		
32	555,51	151	533,65	280	527,18	460	537,97		
33	555,42	154	533,06	283	527,24	465	538,26		
34	555,35	157	532,53	286	527,34	470	538,55		
35	555,26	160	531,88	289	527,40	475	538,84		
36	555,24	163	531,36	292	527,49	480	539,12		
38	554,94	166	530,85	295	527,57	485	539,40		
40	554,69	169	530,46	298	527,66	490	539,68		
43	554,18	172	530,04	301	527,76	495	539,96		
46	553.97	175	529.55	304	527.89	500	540.24		
49	553.72	178	529.25	307	528.02	505	540.51		
52	553,41	181	528,85	310	528,18	510	540,78		

Tabelle B-2: Kühlmitteleintrittstemperatur für Strang #2

Zeit	T [K]	Zeit	т [К]	Zeit	T [K]	Zeit	T [K]	Zeit	т [К]
[5]	561 15	[>]	549.90	19/	520.07	[>]	526 45	[>]	540.46
1	561.08	58	540,00	104	520,97	315	526,45	520	540,40
2	560.96	61	5/6 90	107	520,00	310	527.00	525	5/1 01
2	560.94	64	545.80	103	520,70	321	527,00	530	5/1 28
<u> </u>	560.87	67	544 38	195	520,75	32/	527,10	535	5/1 55
- - 5	560.65	70	5/3 28	100	520,00	325	527 53	540	5/1 82
6	560.48	73	5/2 78	202	520,00	330	527,00	545	5/2 08
7	560.28	76	5/1 02	202	520,90	335	528 38	550	5/2 35
8	560.07	70	5/1 26	203	520,03	340	528.81	555	5/2 61
0	550,07	82	540.15	200	520,03	340	520,01	560	5/2 88
10	550 03	85	530.21	211	520,00	350	529,22	565	5/3 11
11	558 57	88	538 57	214	521.03	355	529,03	570	5/3 36
12	557.80	00	537 76	217	521,05	360	530,04	575	5/3 61
12	556 95	91	536.88	220	521,25	365	530,43	580	5/3 85
1/	556 38	94	536.07	225	521,43	370	531 21	585	544.00
15	556 13	100	535.26	220	521,71	375	531,21	500	511 33
16	556 23	100	534 51	223	522.00	380	531.06	595	544 57
17	556 60	105	533 7/	235	522,03	385	532 33	600	5// 81
18	557.07	100	532.88	238	522,20	300	532,00	000	077,01
19	557.60	112	532,00	200	522,42	395	533.05		
20	558 11	115	531 44	241	522,07	400	533.40		
21	558 34	118	530 71	244	522,71	405	533 74		
22	558 47	121	529.92	250	522,00	410	534.08		
23	558 48	121	529 10	253	523 13	415	534 42		
24	558.38	127	528.34	256	523 26	420	534 75		
25	558.04	130	527.65	259	523.40	425	535.08		
26	557.58	133	527.03	262	523.52	430	535.41		
27	557,19	136	526.44	265	523.65	435	535.73		
28	556.64	139	525.94	268	523.76	440	536.05		
29	555.96	142	525.45	271	523.88	445	536.36		
30	555.78	145	524.76	274	524.00	450	536.67		
31	555.49	148	524.27	277	524.10	455	536.98		
32	555.35	151	523.93	280	524.24	460	537.28		
33	555.11	154	523.61	283	524.32	465	537.58		
34	554,90	157	523,30	286	524,44	470	537,88		
35	554,68	160	522,83	289	524,52	475	538,18		
36	554,62	163	522,45	292	524,62	480	538,47		
38	554,01	166	522,10	295	524,73	485	538,76		
40	553,51	169	521,89	298	524,88	490	539,05		
43	552,66	172	521,78	301	525,12	495	539,33		
46	552,03	175	521,71	304	525,45	500	539,62		
49	551,04	178	521,52	307	525,79	505	539,90		
52	549,97	181	521,23	310	526,16	510	540,18		

Tabelle B-3: Kühlmitteleintrittstemperatur für Strang #3

Zeit	т [К]	Zeit	т [К]	Zeit	T [K]	Zeit	т [К]	Zeit	т [К]
	E61.60	[S] 55	E 40 60	101	516.04	<u>[S]</u>	EDE 40	[S]	E 10 16
1	561.55	50	542,00	104	516,04	216	525,43	510	540,10
1 2	561 /1	00 61	541,20	107	516,00	210	525,79	520	540,44
2	561 15	64	520.01	190	516,09	221	520,12	520	540,72
3	560 51	67	527 45	195	516,40	321	520,34	530	540,99
4	500,51	70	537,45	190	516,07	324	520,05	535	541,27
5	550,07	70	530,25	199	510,90	320	520,75	540	541,54
0	557,29	73	535,50	202	517,00	330	527,24	545 550	541,81
/	553,40	70	534,42	205	517,10	335	521,12	550	542,00
8	553,05	79	533,71	208	517,20	340	528,18	555	542,34
9	551,73	82	532,58	211	517,38	345	528,63	560	542,61
10	549,47	85	531,60	214	517,54	350	529,08	505	542,85
11	548,38	88	530,92	217	517,80	300	529,51	570	543,10
12	546,90	91	530,08	220	518,23	360	529,93	5/5	543,35
13	545,73	94	529,20	223	518,68	365	530,34	580	543,59
14	544,98	97	528,40	226	519,06	370	530,74	585	543,84
15	544,49	100	527,60	229	519,43	375	531,13	590	544,08
16	544,29	103	526,86	232	519,71	380	531,52	595	544,32
1/	556,56	106	526,11	235	519,96	385	531,89	600	544,56
18	556,99	109	525,27	238	520,19	390	532,26		
19	557,49	112	524,60	241	520,41	395	532,63		
20	557,96	115	523,88	244	520,60	400	532,99		
21	558,18	118	523,17	247	520,79	405	533,34		
22	558,30	121	522,41	250	520,97	410	533,69		
23	558,33	124	521,61	253	521,14	415	534,04		
24	558,26	127	520,86	256	521,31	420	534,38		
25	558,01	130	520,19	259	521,47	425	534,71		
26	557,66	133	519,62	262	521,62	430	535,04		
27	557,34	136	519,14	265	521,77	435	535,37		
28	556,85	139	518,74	268	521,91	440	535,69		
29	556,15	142	518,34	271	522,04	445	536,01		
30	555,94	145	517,81	274	522,17	450	536,33		
31	555,53	148	517,48	277	522,29	455	536,64		
32	555,29	151	517,29	280	522,44	460	536,95		
33	554,85	154	517,17	283	522,53	465	537,25		
34	554,50	157	517,03	286	522,66	470	537,55		
35	554,13	160	516,71	289	522,75	475	537,85		
36	554,03	163	516,41	292	522,86	480	538,15		
38	552,91	166	516,19	295	522,98	485	538,45		
40	551,72	169	516,11	298	523,20	490	538,74		
43	549,56	172	516,18	301	523,55	495	539,03		
46	547,85	175	516,30	304	524,03	500	539,32		
49	546,00	178	516,27	307	524,52	505	539,60		
52	544,39	181	516,17	310	525,04	510	539,88		

Tabelle B-4: Kühlmitteleintrittstemperatur für Strang #4

Zeit	G								
[s]	[kg/s]								
0	4472,7	55	5543,7	184	5793,3	313	5673,1	515	5532,7
1	4518,5	58	5562,8	187	5792,6	316	5669,1	520	5530,1
2	4604,0	61	5578,6	190	5790,6	319	5665,4	525	5527,6
3	4676,0	64	5592,9	193	5784,8	321	5663,1	530	5525,1
4	4737,6	67	5608,0	196	5780,2	324	5659,8	535	5522,6
5	4793,4	70	5621,3	199	5776,5	325	5658,8	540	5520,1
6	4829,0	73	5629,7	202	5773,8	330	5653,8	545	5517,7
7	4864,2	76	5643,3	205	5771,5	335	5649,0	550	5515,2
8	4894,9	79	5651,3	208	5769,8	340	5644,4	555	5512,8
9	4929,6	82	5663,3	211	5768,4	345	5639,9	560	5510,4
10	4976,6	85	5673,5	214	5766,0	350	5635,6	565	5507,2
11	5000,8	88	5680,4	217	5762,2	355	5631,5	570	5504,6
12	5046,4	91	5688,8	220	5756,1	360	5627,5	575	5502,1
13	5083,2	94	5697,3	223	5750,0	365	5623,6	580	5499,5
14	5114,9	97	5705,1	226	5745,0	370	5619,8	585	5497,0
15	5138,8	100	5712,5	229	5740,3	375	5616,2	590	5494,5
16	5159,0	103	5719,4	232	5736,9	380	5612,6	595	5492,0
17	5178,6	106	5726,3	235	5733,8	385	5609,1	600	5489,5
18	5194,5	109	5734,0	238	5731,0	390	5605,6		
19	5208,0	112	5740,0	241	5728,6	395	5602,2		
20	5218,3	115	5746,4	244	5726,4	400	5598,9		
21	5223,9	118	5752,5	247	5724,3	405	5595,6		
22	5229,3	121	5759,2	250	5722,4	410	5592,4		
23	5235,1	124	5766,4	253	5720,5	415	5589,2		
24	5241,1	127	5773,4	256	5718,7	420	5586,0		
25	5247,0	130	5779,5	259	5717,0	425	5582,9		
26	5254,6	133	5784,0	262	5715,4	430	5579,9		
27	5263,5	136	5787,2	265	5713,9	435	5576,9		
28	5273,7	139	5789,5	268	5712,5	440	5573,9		
29	5286,5	142	5792,5	271	5711,2	445	5570,9		
30	5290,1	145	5796,1	274	5709,9	450	5568,0		
31	5298,5	148	5797,6	277	5708,7	455	5565,1		
32	5304,0	151	5797,6	280	5707,3	460	5562,3		
33	5315,4	154	5796,6	283	5706,4	465	5559,5		
34	5323,1	157	5796,1	286	5705,2	470	5556,7		
35	5330,7	160	5797,9	289	5704,5	475	5553,9		
36	5331,8	163	5800,1	292	5703,7	480	5551,2		
38	5356,3	166	5801,1	295	5702,7	485	5548,5		
40	5381,4	169	5800,3	298	5700,5	490	5545,8		
43	5425,5	172	5797,6	301	5696,0	495	5543,1		
46	5459,5	175	5794,3	304	5689,9	500	5540,5		
49	5494,0	178	5793,5	307	5683,7	505	5537,9		
52	5519,7	181	5793,0	310	5677,6	510	5535,3		

Tabelle B-5: Kühlmitteldurchsatz Kalter Strang #1

Zeit	G								
[s]	[kg/s]								
0	4417,6	55	5175,6	184	5424,1	313	5445,1	515	5338,6
1	4434,2	58	5179,3	187	5428,2	316	5444,0	520	5336,3
2	4481,6	61	5180,9	190	5430,8	319	5442,8	525	5334,0
3	4535,1	64	5182,7	193	5434,8	321	5441,9	530	5331,8
4	4588,7	67	5185,5	196	5437,6	324	5440,5	535	5329,5
5	4639,6	70	5189,0	199	5440,5	325	5440,0	540	5327,3
6	4673,2	73	5191,7	202	5443,1	330	5437,5	545	5325,0
7	4707,1	76	5196,8	205	5445,5	335	5434,8	550	5322,8
8	4736,9	79	5199,5	208	5447,5	340	5432,0	555	5320,6
9	4770,6	82	5204,4	211	5449,7	345	5429,2	560	5318,4
10	4815,9	85	5209,8	214	5451,4	350	5426,3	565	5315,4
11	4839,2	88	5214,2	217	5452,7	355	5423,3	570	5313,0
12	4883,9	91	5220,6	220	5454,1	360	5420,4	575	5310,6
13	4919,4	94	5227,6	223	5455,3	365	5417,4	580	5308,3
14	4950,2	97	5234,5	226	5456,4	370	5414,4	585	5306,0
15	4973,0	100	5241,6	229	5457,3	375	5411,5	590	5303,6
16	4992,1	103	5248,5	232	5457,7	380	5408,5	595	5301,3
17	5010,4	106	5255,8	235	5457,9	385	5405,6	600	5299,0
18	5024,8	109	5264,1	238	5458,0	390	5402,7		
19	5036,4	112	5270,8	241	5457,9	395	5399,8		
20	5044,5	115	5278,4	244	5457,7	400	5397,0		
21	5048,8	118	5285,7	247	5457,4	405	5394,2		
22	5053,1	121	5293,8	250	5457,0	410	5391,4		
23	5057,7	124	5302,2	253	5456,5	415	5388,6		
24	5064,6	127	5309,7	256	5456,1	420	5385,9		
25	5073,3	130	5316,9	259	5455,5	425	5383,2		
26	5083,4	133	5323,7	262	5455,0	430	5380,6		
27	5094,0	136	5331,0	265	5454,4	435	5377,9		
28	5105,2	139	5338,4	268	5453,8	440	5375,3		
29	5117,1	142	5345,5	271	5453,2	445	5372,7		
30	5119,8	145	5353,9	274	5452,6	450	5370,1		
31	5123,8	148	5360,8	277	5452,0	455	5367,6		
32	5125,5	151	5366,2	280	5451,3	460	5365,1		
33	5129,4	154	5372,9	283	5450,8	465	5362,6		
34	5131,4	157	5378,7	286	5450,1	470	5360,1		
35	5133,6	160	5385,9	289	5449,6	475	5357,6		
36	5134,8	163	5391,3	292	5449,1	480	5355,2		
38	5142,6	166	5396,9	295	5448,6	485	5352,8		
40	5147,0	169	5401,3	298	5448,2	490	5350,4		
43	5157,4	172	5406,1	301	5447,7	495	5348,0		
46	5161,3	175	5411,7	304	5447,2	500	5345,6		
49	5166,3	178	5415,1	307	5446,6	505	5343,3		
52	5168,0	181	5419,6	310	5445,9	510	5340,9		

Tabelle B-6: Kühlmitteldurchsatz Kalter Strang #2

Zeit	G								
[s]	[kg/s]								
0	4356,5	55	5174,9	184	5453,2	313	5408,0	515	5288,0
1	4356,5	58	5185,3	187	5454,9	316	5405,6	520	5285,7
2	4386,0	61	5195,0	190	5455,4	319	5403,2	525	5283,3
3	4422,7	64	5205,7	193	5455,0	321	5401,7	530	5281,0
4	4448,5	67	5223,1	196	5454,4	324	5399,4	535	5278,7
5	4494,4	70	5235,5	199	5454,1	325	5398,7	540	5276,4
6	4549,4	73	5240,1	202	5454,0	330	5395,0	545	5274,2
7	4587,6	76	5248,4	205	5454,1	335	5391,4	550	5271,9
8	4625,9	79	5255,6	208	5454,3	340	5387,8	555	5269,7
9	4658,9	82	5267,6	211	5454,7	345	5384,2	560	5267,5
10	4695,3	85	5277,4	214	5454,6	350	5380,7	565	5264,4
11	4743,3	88	5283,9	217	5453,7	355	5377,2	570	5262,0
12	4767,8	91	5292,1	220	5451,7	360	5373,8	575	5259,6
13	4814,5	94	5300,9	223	5449,5	365	5370,4	580	5257,2
14	4851,8	97	5309,1	226	5447,6	370	5367,1	585	5254,9
15	4884,2	100	5317,1	229	5445,8	375	5363,9	590	5252,5
16	4908,8	103	5324,6	232	5444,4	380	5360,7	595	5250,2
17	4929,6	106	5332,2	235	5443,0	385	5357,5	600	5247,8
18	4949,7	109	5340,6	238	5441,7	390	5354,4		
19	4965,6	112	5347,3	241	5440,4	395	5351,4		
20	4978,5	115	5354,6	244	5439,2	400	5348,4		
21	4987,6	118	5361,5	247	5438,0	405	5345,4		
22	4992,5	121	5369,1	250	5436,8	410	5342,5		
23	4997,3	124	5377,0	253	5435,7	415	5339,6		
24	5002,4	127	5384,3	256	5434,5	420	5336,7		
25	5009,2	130	5391,0	259	5433,4	425	5333,9		
26	5017,4	133	5396,8	262	5432,3	430	5331,1		
27	5027,0	136	5402,5	265	5431,3	435	5328,4		
28	5037,1	139	5406,8	268	5430,3	440	5325,7		
29	5047,8	142	5411,3	271	5429,3	445	5323,0		
30	5059,7	145	5418,1	274	5428,3	450	5320,3		
31	5062,6	148	5422,8	277	5427,5	455	5317,7		
32	5067,8	151	5425,8	280	5426,3	460	5315,1		
33	5070,6	154	5428,5	283	5425,7	465	5312,5		
34	5077,2	157	5431,3	286	5424,7	470	5310,0		
35	5081,3	160	5435,9	289	5424,1	475	5307,4		
36	5085,7	163	5439,5	292	5423,4	480	5304,9		
38	5087,2	166	5442,8	295	5422,7	485	5302,5		
40	5100,2	169	5445,2	298	5421,6	490	5300,0		
43	5108,3	172	5445,6	301	5419,6	495	5297,6		
46	5123,4	175	5445,7	304	5416,7	500	5295,2		
49	5132,9	178	5447,6	307	5413,7	505	5292,8		
52	5148,4	181	5450,5	310	5410,4	510	5290,4		

Tabelle B-7: Kühlmitteldurchsatz Kalter Strang #3

Zeit	G [ka/s]	Zeit	G	Zeit	G [ka/s]	Zeit	G [ka/s]	Zeit	G
[s]	O [K9/S]	[s]	[kg/s]	[s]	O [Ky/S]	[S]	O [K9/S]	[s]	[kg/s]
0	4509,2	55	-1773,0	184	-1860,6	313	-1835,4	515	-1790,5
1	4206,4	58	-1778,2	187	-1861,3	316	-1834,4	520	-1789,7
2	3825,0	61	-1782,5	190	-1861,4	319	-1833,5	525	-1788,8
3	3471,4	64	-1783,3	193	-1860,8	321	-1832,9	530	-1788,0
4	3142,6	67	-1788,8	196	-1859,9	324	-1832,0	535	-1787,2
5	2767,7	70	-1793,8	199	-1859,2	325	-1831,7	540	-1786,4
6	2510,9	73	-1796,3	202	-1858,7	330	-1830,2	545	-1785,6
7	2247,3	76	-1799,8	205	-1858,4	335	-1828,8	550	-1784,8
8	2015,3	79	-1802,2	208	-1858,1	340	-1827,4	555	-1784,0
9	1763,3	82	-1805,7	211	-1858,2	345	-1826,0	560	-1783,2
10	1447,3	85	-1808,5	214	-1858,2	350	-1824,6	565	-1780,4
11	1283,9	88	-1810,5	217	-1857,7	355	-1823,3	570	-1779,5
12	1014,7	91	-1813,1	220	-1856,6	360	-1822,0	575	-1778,7
13	760,6	94	-1815,8	223	-1855,4	365	-1820,7	580	-1777,9
14	532,0	97	-1818,4	226	-1854,4	370	-1819,5	585	-1777,1
15	309,0	100	-1820,9	229	-1853,4	375	-1818,3	590	-1776,2
16	77,4	103	-1823,8	232	-1852,7	380	-1817,1	595	-1775,4
17	-180,1	106	-1825,8	235	-1852,0	385	-1815,9	600	-1774,6
18	-396,8	109	-1828,4	238	-1851,4	390	-1814,7		
19	-593,0	112	-1830,6	241	-1850,8	395	-1813,6		
20	-754,6	115	-1833,0	244	-1850,3	400	-1812,5		
21	-837,4	118	-1834,2	247	-1849,7	405	-1811,4		
22	-904,0	121	-1836,4	250	-1849,2	410	-1810,3		
23	-973,8	124	-1839,1	253	-1848,7	415	-1809,2		
24	-1029,0	127	-1841,8	256	-1848,2	420	-1808,2		
25	-1087,9	130	-1844,4	259	-1847,7	425	-1807,2		
26	-1134,2	133	-1845,4	262	-1847,2	430	-1806,1		
27	-1173,3	136	-1847,5	265	-1846,7	435	-1805,1		
28	-1213,9	139	-1848,8	268	-1846,3	440	-1804,1		
29	-1264,3	142	-1850,3	271	-1845,8	445	-1803,2		
30	-1279,2	145	-1852,5	274	-1845,4	450	-1802,2		
31	-1310,3	148	-1854,2	277	-1844,9	455	-1801,2		
32	-1330,0	151	-1854,4	280	-1844,2	460	-1800,3		
33	-1370,1	154	-1854,9	283	-1843,7	465	-1799,4		
34	-1396,3	157	-1855,2	286	-1843,3	470	-1798,4		
35	-1421,6	160	-1856,7	289	-1842,8	475	-1797,5		
36	-1428,1	163	-1858,0	292	-1842,3	480	-1796,6		
38	-1492,4	166	-1859,3	295	-1842,1	485	-1795,7		
40	-1539,5	169	-1860,1	298	-1841,7	490	-1794,8		
43	-1617,0	172	-1859,9	301	-1840,8	495	-1794,0		
46	-1674,9	175	-1859,1	304	-1839,5	500	-1793,1		
49	-1741,6	178	-1859,1	307	-1838,0	505	-1792,2		
52	-1765,9	181	-1859,6	310	-1836,5	510	-1791,4		

Tabelle B-8: Kühlmitteldurchsatz Kalter Strang #4

Zeit [s]	p [MPa]	Zeit [s]	p [MPa]						
0	16,004	55	13,016	184	11.520	313	12,688	515	15.258
1	15.820	58	12.939	187	11.535	316	12.731	520	15.318
2	15.512	61	12.866	190	11.544	319	12.773	525	15.377
3	15,502	64	12,789	193	11,559	321	12,802	530	15,437
4	15,448	67	12,717	196	11,571	324	12,844	535	15,496
5	15,219	70	12,651	199	11,585	325	12,858	540	15,556
6	15,081	73	12,606	202	11,599	330	12,928	545	15,615
7	14,956	76	12,530	205	11,618	335	12,998	550	15,675
8	14,852	79	12,486	208	11,640	340	13,067	555	15,734
9	14,746	82	12,420	211	11,674	345	13,136	560	15,794
10	14,629	85	12,361	214	11,705	350	13,204	565	15,816
11	14,556	88	12,319	217	11,730	355	13,271	570	15,838
12	14,529	91	12,266	220	11,762	360	13,338	575	15,861
13	14,438	94	12,210	223	11,793	365	13,405	580	15,883
14	14,406	97	12,159	226	11,824	370	13,471	585	15,906
15	14,372	100	12,109	229	11,859	375	13,536	590	15,928
16	14,343	103	12,061	232	11,888	380	13,602	595	15,950
17	14,301	106	12,015	235	11,916	385	13,666	600	15,973
18	14,269	109	11,962	238	11,943	390	13,731		
19	14,234	112	11,921	241	11,969	395	13,794		
20	14,196	115	11,876	244	11,994	400	13,858		
21	14,170	118	11,834	247	12,018	405	13,921		
22	14,144	121	11,795	250	12,042	410	13,984		
23	14,096	124	11,755	253	12,066	415	14,047		
24	14,066	127	11,721	256	12,089	420	14,109		
25	13,998	130	11,690	259	12,111	425	14,171		
26	13,944	133	11,666	262	12,133	430	14,233		
27	13,920	136	11,641	265	12,155	435	14,294		
28	13,876	139	11,619	268	12,175	440	14,356		
29	13,817	142	11,600	271	12,196	445	14,417		
30	13,797	145	11,577	274	12,216	450	14,478		
31	13,752	148	11,560	277	12,236	455	14,538		
32	13,725	151	11,547	280	12,264	460	14,599		
33	13,682	154	11,535	283	12,282	465	14,659		
34	13,649	157	11,526	286	12,313	470	14,720		
35	13,614	160	11,517	289	12,338	475	14,780		
36	13,606	163	11,511	292	12,377	480	14,840		
38	13,534	166	11,504	295	12,417	485	14,900		
40	13,467	169	11,500	298	12,460	490	14,960		
43	13,368	172	11,498	301	12,504	495	15,019		
46	13,283	175	11,499	304	12,549	500	15,079		
49	13,185	178	11,501	307	12,593	505	15,139		
52	13,100	181	11,508	310	12,644	510	15,198		

Tabelle B-9: Druck am Reaktoreintritt #1

Zeit	p [MPa]	Zeit	p [MPa]	Zeit	p [MPa]	Zeit	p [MPa]	Zeit	p [MPa]
[3]	16.005	[9] 55	13 037	18/	11 5/2	[3]	12 708	[9] 515	15 278
1	15,822	58	12 961	187	11 557	316	12,700	520	15,270
2	15,517	61	12,001	190	11,566	319	12,794	525	15,397
3	15,509	64	12,000	193	11,581	321	12,701	530	15 456
4	15 457	67	12,011	196	11,593	324	12,864	535	15,100
5	15,229	70	12,673	199	11,607	325	12,878	540	15,575
6	15.092	73	12,628	202	11,621	330	12,948	545	15,635
7	14,968	76	12,552	205	11,639	335	13.018	550	15,694
8	14.864	79	12,509	208	11.662	340	13.087	555	15.754
9	14.759	82	12.443	211	11.695	345	13.156	560	15.814
10	14.643	85	12.384	214	11.726	350	13.224	565	15.835
11	14.570	88	12.342	217	11.752	355	13.292	570	15.858
12	14.544	91	12.289	220	11.783	360	13.359	575	15.881
13	14.453	94	12.233	223	11.814	365	13.425	580	15.903
14	14,422	97	12,181	226	11,845	370	13,491	585	15,925
15	14,388	100	12,131	229	11,880	375	13,557	590	15,948
16	14,359	103	12,084	232	11,909	380	13,622	595	15,970
17	14,318	106	12,037	235	11,937	385	13,686	600	15,992
18	14,286	109	11,985	238	11,964	390	13,751		
19	14,251	112	11,944	241	11,990	395	13,815		
20	14,213	115	11,898	244	12,015	400	13,878		
21	14,187	118	11,857	247	12,039	405	13,941		
22	14,162	121	11,817	250	12,063	410	14,004		
23	14,114	124	11,778	253	12,087	415	14,067		
24	14,084	127	11,744	256	12,110	420	14,129		
25	14,016	130	11,713	259	12,132	425	14,191		
26	13,962	133	11,689	262	12,154	430	14,253		
27	13,938	136	11,664	265	12,176	435	14,314		
28	13,894	139	11,642	268	12,196	440	14,376		
29	13,835	142	11,623	271	12,217	445	14,437		
30	13,815	145	11,600	274	12,237	450	14,498		
31	13,771	148	11,582	277	12,257	455	14,558		
32	13,744	151	11,570	280	12,284	460	14,619		
33	13,701	154	11,557	283	12,303	465	14,679		
34	13,667	157	11,548	286	12,334	470	14,740		
35	13,633	160	11,540	289	12,359	475	14,800		
36	13,625	163	11,533	292	12,398	480	14,860		
38	13,553	166	11,526	295	12,437	485	14,920		
40	13,487	169	11,522	298	12,481	490	14,980		
43	13,388	172	11,521	301	12,525	495	15,039		
46	13,304	175	11,521	304	12,570	500	15,099		
49	13,206	178	11,523	307	12,614	505	15,159		
52	13,121	181	11,530	310	12,665	510	15,218		

 Tabelle B-10: Druck am Reaktoreintritt #2

Zeit	p [MPa]	Zeit	p [MPa]	Zeit	p [MPa]	Zeit	p [MPa]	Zeit	p IMDol
	16.005	[S] 55	12.025	101	11 520	[5]	12 706	[S]	[IVIFa]
0	16,005	55	12,050	104	11,559	216	12,700	515	15,275
1	15,025	00 61	12,900	107	11,554	210	12,749	520	15,335
2	15,510	64	12,000	190	11,303	201	12,791	520	15,395
3	15,510	67	12,007	193	11,576	321	12,020	530	15,454
4	15,400	70	12,730	190	11,590	324	12,002	535	15,514
5	15,230	70	12,009	199	11,003	325	12,070	540	15,575
0	15,093	73	12,024	202	11,010	330	12,946	545 550	15,033
/	14,969	70	12,549	205	11,030	335	13,010	550	15,092
8	14,800	79	12,505	208	11,659	340	13,085	555	15,752
9	14,759	8Z 05	12,439	211	11,692	345	13,153	560	15,011
10	14,643	80	12,380	214	11,723	350	13,222	505	15,833
11	14,571	88	12,338	217	11,749	355	13,289	570	15,856
12	14,543	91	12,285	220	11,780	360	13,356	5/5	15,878
13	14,452	94	12,229	223	11,811	365	13,423	580	15,901
14	14,421	97	12,178	226	11,842	370	13,489	585	15,923
15	14,387	100	12,128	229	11,877	375	13,554	590	15,945
16	14,358	103	12,080	232	11,906	380	13,619	595	15,968
1/	14,317	106	12,034	235	11,934	385	13,684	600	15,990
18	14,285	109	11,981	238	11,961	390	13,748		
19	14,249	112	11,940	241	11,987	395	13,812		
20	14,212	115	11,895	244	12,012	400	13,876		
21	14,186	118	11,853	247	12,037	405	13,939		
22	14,160	121	11,814	250	12,061	410	14,002		
23	14,112	124	11,774	253	12,084	415	14,064		
24	14,082	127	11,740	256	12,107	420	14,127		
25	14,014	130	11,710	259	12,129	425	14,189		
26	13,960	133	11,685	262	12,151	430	14,250		
27	13,936	136	11,660	265	12,173	435	14,312		
28	13,893	139	11,638	268	12,193	440	14,373		
29	13,833	142	11,619	271	12,214	445	14,434		
30	13,813	145	11,596	274	12,234	450	14,495		
31	13,769	148	11,579	277	12,254	455	14,556		
32	13,742	151	11,566	280	12,282	460	14,617		
33	13,699	154	11,554	283	12,301	465	14,677		
34	13,665	157	11,545	286	12,331	470	14,737		
35	13,631	160	11,536	289	12,356	475	14,797		
36	13,623	163	11,530	292	12,395	480	14,857		
38	13,551	166	11,523	295	12,435	485	14,917		
40	13,484	169	11,519	298	12,478	490	14,977		
43	13,386	172	11,517	301	12,522	495	15,037		
46	13,301	175	11,518	304	12,567	500	15,097		
49	13,203	178	11,520	307	12,611	505	15,156		
52	13,118	181	11,527	310	12,662	510	15,216		

Tabelle B-11: Druck am Reaktoreintritt #3

Zeit	p [MPa]	Zeit	p [MPa]	Zeit	p [MPa]	Zeit	p [MPa]	Zeit	p [MPa]
[5]	16.004	[9] 55	13 0/17	18/	11 552	[3]	12 718	[9] 515	15 288
1	15,825	58	12 970	187	11,566	316	12,710	520	15,200
2	15,526	61	12,897	190	11,576	319	12,701	525	15 407
3	15 521	64	12,807	193	11,591	321	12,832	530	15 466
4	15 472	67	12,020	196	11,603	324	12,802	535	15 526
5	15,246	70	12,682	199	11,616	325	12,889	540	15,585
6	15,111	73	12,636	202	11,630	330	12,959	545	15,645
7	14,988	76	12,561	205	11,649	335	13.028	550	15,704
8	14.885	79	12.517	208	11.671	340	13.097	555	15.764
9	14.781	82	12.452	211	11.705	345	13.166	560	15.824
10	14.665	85	12.393	214	11.736	350	13.234	565	15.846
11	14.593	88	12.350	217	11.762	355	13.302	570	15.868
12	14.566	91	12.297	220	11.793	360	13.369	575	15.891
13	14.475	94	12.241	223	11.824	365	13.435	580	15.913
14	14,443	97	12,190	226	11,855	370	13,501	585	15,935
15	14,409	100	12,140	229	11,890	375	13,567	590	15,958
16	14,379	103	12,093	232	11,919	380	13,632	595	15,980
17	14,337	106	12,046	235	11,947	385	13,697	600	16,002
18	14,304	109	11,994	238	11,974	390	13,761		
19	14,267	112	11,952	241	12,000	395	13,825		
20	14,229	115	11,907	244	12,025	400	13,888		
21	14,202	118	11,866	247	12,049	405	13,951		
22	14,176	121	11,826	250	12,073	410	14,014		
23	14,128	124	11,787	253	12,097	415	14,077		
24	14,098	127	11,752	256	12,120	420	14,139		
25	14,029	130	11,722	259	12,142	425	14,201		
26	13,975	133	11,698	262	12,164	430	14,263		
27	13,951	136	11,673	265	12,186	435	14,324		
28	13,907	139	11,651	268	12,206	440	14,386		
29	13,848	142	11,632	271	12,227	445	14,447		
30	13,828	145	11,609	274	12,247	450	14,508		
31	13,783	148	11,591	277	12,267	455	14,568		
32	13,756	151	11,579	280	12,295	460	14,629		
33	13,713	154	11,566	283	12,313	465	14,690		
34	13,679	157	11,557	286	12,344	470	14,750		
35	13,645	160	11,549	289	12,369	475	14,810		
36	13,637	163	11,543	292	12,408	480	14,870		
38	13,564	166	11,535	295	12,447	485	14,930		
40	13,497	169	11,532	298	12,491	490	14,990		
43	13,398	172	11,530	301	12,535	495	15,049		
46	13,314	175	11,530	304	12,580	500	15,109		
49	13,215	178	11,532	307	12,624	505	15,169		
52	13,130	181	11,539	310	12,675	510	15,228		

Tabelle B-12: Druck am Reaktoreintritt #4