Forschungszentrum Karlsruhe

Technik und Umwelt Institut für Reaktorsicherheit

Validation of Calculation Tools for the Estimation of Reaction Products in the Target of Accelerator Driven Systems

Diplomarbeit zum Erwerb des akademischen Grades "Diplom Ingenieur" Fakultät für Maschinenbau der Universität Karlsruhe (TH)

Projet de fin d'études présenté pour obtenir le diplôme d'ingénieur ENSAM Ecole Nationale Supérieure d'Arts et Métiers

Pauline Rousseau

Forschungszentrum Karlsruhe GmbH, Karlsruhe

May 2004

Acknowledgements

I would like to thank sincerely all people who contributed to this project:

- All in front I would like to thank Dr. C. Broeders for the interesting subject and the constant availability for answering of my questions, and who introduced me with much patience and helpfulness into this new topic area. He learned to me much as well on the theory as on the working methods in the research sector.
- I make a point of thanking the director of the IRS Prof. Dr. D. G. Cacuci to have welcomed me within this service and Dr. V. Heinzel to refer this work.
- Many thanks to L. Sharp, M. Zimmermann, D. Stephany for their kindness, their help and their good mood.
- I also thank all people who allowed me to advance in my work when there was a dead end namely J. C. David and A. Boudard from CEA, L. Waters from LANL, and I. Broeders from the FZK.
- I especially thank Carmen Villagrassa-Cantón-Roussel who helped and learned me a lot during the last straight line of the project.
- In addition I would like to thank all co-workers for the various assistances and the good work atmosphere.

Contents

Introduction	1
Chapter 1. Physicals Models	4
 1.1. The spallation reaction	4 4 6 7 8
 1.2. The Cugnon-Schmidt Model	8 8 11
2.1. The Cugnon code in the Stand-alone version	14
2.2. MCNPX	16
 2.3. Structure and sequences of the programs	 18 18 19 20
Chapter 3. Comparison of MCNPX with the INCL4-ABLA model and the Cugnon Schmidt code in the Stand-alone version	n- 21
3.1. Comparison of the two codes	21
 3.2. Investigations related to the normalization factor	29 29 31 32 32 33
3.3. Influence of input parameters	33
3.4. Thin target experiment at 1 GeV proton energy	 45 45 els. 45
 3.5. Evaluation of new experimental data	 48 48 48 51

Chapter 4	LiSoR: A supporting experiment for the MEGAPIE project	54
4.1. Des	scription of the LiSoR experiment	54
4.2. Sin	nulation parameters	55
4.2.1	The target geometry	55
4.2.2.	Beam parameters	60
4.3. Pre	liminary calculations	60
4.3.1	The Polonium issue	60
4.3.2	Production of Polonium isotopes in the LBE eutectic	60
4.3	.2.1. Remarks on the applied units	60
4.3	.2.2. Calculation of radioactivity	61
4.3	.2.3. Comparison of formula (4.7) with results of ORIHET3	63
4.3	.2.4. Polonium production rates and induced activity	64
4.3	.2.5. Build-up of Polonium concentration and activity	65
4.4. Cal	culations related to the LiSoR experimental results	67
Chapter 5.	Comparison KAPROS/ORIHET3	70
5.1. KA	PROS	70
5.1.1	Theory	70
5.1.2	Flowchart for KAPROS burn up calculations	73
5.1.3	The input file	76
5.2. OR	IHET3	77
5.2.1	Utilization of the program	77
5.2.2.	The input file for ORIHET3	78
Conclusio	n	79
Annex A	Distribution of spallation yields before normalization calculated by	
	MCNPX and obtained by HTAPE3X and with the tally 8 option	80
Annex B	Experimental data at 600 MeV for ²⁰⁸ Pb	87
Annex C	Calculations of volumes of the LiSoR test tube cells	90
Annex D	Concentrations and alpha-activities of Polonium isotopes after 34 hours	
	continuous irradiation in the real geometry target	93
Bibliograp	<i>bhy</i>	95

List of Figures

Figure 0-1: Sch	ematic principle of the Energy Amplifier taken from [5]2
Figure 0-2: Tech	hnical working groups of the ATW taken from [4]3
Figure 1-1: The	spallation reaction integrated in a thick target5
Figure 1-2: The	different stages and their durations of the spallation reaction [19]6
Figure 2-1: Exa	mple of an MCNPX input file for calculating the production cross section ²⁰⁸ Pb irradiated by a 1 GeV proton beam
Figure 2-2: Seq	uence of the programs to obtain the spallation yields as a function of the
ma	uss number A or of the charge number Z
Figure 2-3: Sequ	uence of the programs to use the Cugnon code in Stand-alone version 19
Figure 2-4: See iso	quence of the programs to obtain a view of the spallation yields per 20
Figure 3-1: Tw	vo different methods of treatments to obtain the spallation yields in CNPX
Figure 3-2: Co ob spo the	mparison of with MCNPX computed (ISABEL model) spallation yields tained with different combinations of LCA parameters and experimental allation yields (GSI, ISTC). Mass yields in millibarn [mb] as a function of e mass number A
Figure 3-3: Con ob spa the	mparison of with MCNPX computed (BERTINI model) spallation yields tained with different combinations of LCA parameters and experimental allation yields (GSI, ISTC). Mass yields in millibarn [mb] as a function of a mass number A
Figure 3-4: Co yie exp a f	mparison of with MCNPX computed (INCL4+ABLA model) spallation elds obtained with different combinations of LCA parameters and perimental spallation yields (GSI, ISTC). Mass yields in millibarn [mb] as function of the mass number A
Figure 3-5: Nuclear	lear density as a function of the distance from the centre of nucleus which uds to the formula (3.9)
Figure 3-6: Co mo spo the	omparison of with MCNPX computed spallation yields (INCL4+ABLA odel) for three different value of the nuclear potential and experimental allation yields (GSI, ISTC). Mass yields in millibarn [mb] as a function of e mass number A
Figure 3-7: Con con fac yie	mparison of with MCNPX and the Cugnon code in Stand-alone version mputed spallation yields (INCL4+ABLA model) with the Pauli blocking ctor set to strict and experimental spallation yields (GSI, ISTC). Mass elds in millibarn [mb] as a function of the mass number A

Figure 3-8:	Comparison of with MCNPX and the Cugnon code in Stand-alone version
	computed spallation yields (INCL4+ABLA model) with the Pauli blocking
	factor set to statistic and experimental spallation yields (GSI, ISTC). Mass
	yields in millibarn [mb] as a function of the mass number A
Figure 3-9:	Influence of the Pauli blocking factor on the residual nuclei production per
	isotopes computed with INCL4+ABLA model in MCNPX for isotopes with a
	charge number between 68 and 70
Figure 3-10	: Influence of the Pauli blocking factor on the residual nuclei production per
	isotopes computed with INCL4+ABLA model in MCNPX for isotopes with a
	charge number between 70 and 73
Figure 3-11	: Influence of the Pauli blocking factor on the residual nuclei production per
	isotopes computed with INCL4+ABLA model in MCNPX for isotopes with a
	charge number between 73 and 75
Figure 3-12	: Influence of the Pauli blocking factor on the residual nuclei production per
	isotopes computed with INCL4+ABLA model in MCNPX for isotopes with a
	charge number between 76 and 77
Figure 3-13	: Influence of the Pauli blocking factor on the residual nuclei production per
-	isotopes computed with INCL4+ABLA model in MCNPX for isotopes with a
	charge number between 78 and 79
Figure 3-14	: Influence of the Pauli blocking factor on the residual nuclei production per
U	isotopes computed with INCL4+ABLA model in MCNPX for isotopes with a
	charge number between 80 and 81
Figure 3-15	: Influence of the Pauli blocking factor on the residual nuclei production per
U	isotopes computed with INCL4+ABLA model in MCNPX for isotopes with a
	charge number between 82 and 83
Figure 3-16	: Comparison at 1 GeV proton energy on ²⁰⁸ Pb of with MCNPX computed
U	spallation yields (Bertini, ISABEL, INCL4+ABLA models) and experimental
	spallation vields (GSI [48], ISTC [46]). Mass vields in millibarn [mb] as a
	function of the mass number A
Figure 3-17	: Comparison at 600 MeV proton energy on ²⁰⁸ Pb of with MCNPX and the
0	Cugnon code in Stand-alone version computed spallation vields
	(INCL4+ABLA model) and experimental spallation yields (ISTC [491), Mass
	vields in millibarn [mb] as a function of the mass number A 49
Figure 3-18	: Comparison at 600 MeV protons energy on ²⁰⁸ Ph of with MCNPX and the
1.19410 5 10	Cugnon code in Stand-alone version computed spallation vields
	(INCL4+ABLA model) and experimental spallation vields (ISTC [491)
	(Integration of the charge number $7 = 50$
	Charge yields in multioarn [mo] as a janenon of the charge number 2 50

Figure 3-19: Comparison of with MCNPX (INCL4+ABLA model) (red triangle) and the
Cugnon code in Stand-alone version (black square) computed spallation
yields at 500 MeV protons energy and experimental spallation yields at 500
MeV (GSI [27, 50]). Mass yields in millibarn [mb] as a function of the mass
number A
Figure 3-20: Comparison of with the Cugnon code in Stand-alone version computed
spallation yields at 500 MeV protons energy with the Pauli blocking factor
set to statistic (black square) and to strict (red triangle) and experimental
spallation yields at 500 MeV (GSI [27, ,50]). Mass yields in millibarn
[mb] as a function of the mass number A53
Figure 4-1: Test tube of the LiSoR experiment
Figure 4-2: Schema of the LiSoR test tube and its cross section
Figure 4-3: MCNPX real geometry visualization of the LiSoR test tube cross section 56
Figure 4-4: LiSoR test tube cross section of the simplified geometry taken from [53] 57
Figure 4-5: Comparison of the total activity of the Polonium isotopes directly after 34
hours irradiation67
Figure 4-6: Residual nuclei production in the LiSoR as a function of the mass number A.
Figure 4-7: Time dependence of the alpha-activity for the polonium isotopes. Alpha-
activity in Curies [Ci] as a function of the time
Figure 5-1: Sequence of the programs for the use of KAPROS for time dependence
calculations
Figure 5-2: Flowchart of the different KAPROS programs related to the figure 5-1 74
Figure 5-3: Sequence of the programs to the use of ORIHET3 for time dependence
calculations

List of Tables

Table 1-1: Main differences between the intranuclear cascades.
Table 1-2: Main differences between the evaporation models
Table 2-1: Cugnon Stand-alone input file and meaning of the different terms [32] 16
Table 3-1: Summary of the different combinations of LCA parameters and the
normalization associated24
Table 3-2: Reaction cross section for the Bertini code and for the Cugnon code
Table 3-3: Geometrical cross section from LAHET for the ISABEL model
Table 3-4: Geometrical cross sections calculated with formulas from bibliography 31
Table 3-5: Input data for the calculation of the geometrical cross section for the Cugnon
<i>model.</i>
Table 3-6: Geometrical cross section for ²⁰⁸ Pb calculated by Cugnon according to the
formula (3.11)
Table 3-7: Geometrical cross section for ²⁰⁸ Pb calculated with the Sihver formula 32
Table 3-8: Summary of the geometrical cross section of the different models (Bertini,
ISABEL and INCL4 models) and of the parametrization from the
bibliography
Table 4-1: MCNPX input file for LiSoR calculations with the real geometry of the test
<i>tube</i>
Table 4-2: Steel T91 composition in weight percentage, taken from [9]
Table 4-3: Coolant composition in weight percentage, taken from [54]. 59
Table 4-4: Beam parameters for the LiSoR irradiation experiment. 60
Table 4-5: Alpha-activity of the Polonium isotopes after continuous irradiation at 50 µA.
Table 4-6: Production rates of Polonium isotopes just after irradiation and cooling time
<i>of zero.</i>
Table 4-7: Alpha activities of Polonium isotopes just after irradiation and cooling time of
<i>zero</i> 64
Table 4-8: Branching ratio for the α -decays in percent used in references [53] and [54].
Table 4-9: Concentrations and alpha-activities of Polonium isotopes after continuous
irradiation
Table 4-10: Total activity of the polonium isotopes for several simulations codes and for
the experiment
Table 5-1: Input file for a KAPROS job. 76
Table 5-2: Input file for an ORIHET3 job and meaning of somes terms. 78

Introduction

Since the mid of the nineties, thanks to the broad interest for accelerator driven systems for energy production and nuclear waste incineration, the spallation reactions interest again the scientific world. Indeed, the industrial exploitation of the spallation reaction would be possible. One of the characteristics of the spallation reaction is to "generate" a lot of neutrons. During the reaction, the emitted nucleon has again enough energy to create new reactions with the near nucleus. In a thick target, the number of neutrons is also multiplicated and, as an example, 25 to 30 neutrons can be produced per incoming proton at 1 GeV in a thick lead target. This characteristic allows the application of the spallation reaction model in high intense neutron sources. One of the applications of this reaction is the accelerator driven sub-critical reactor system. They are called hybrid system and are expected to be a solution to transmute the nuclear waste with long-lived actinides or fission products.

In a hybrid system or ADS (Accelerator Driven System), for an Energy Amplifier proposed by C. Rubbia shown in the figure 0-1, an accelerator (linac or cyclotron) creates a proton beam with high energy (between 0,5 MeV and 2 GeV) which goes on a target constituted of a heavy material (Lead, Lead-Bismuth, etc) [1, 2]. This ensemble produces neutrons. This contribution allows maintaining the chain reaction in the sub-critical system. The neutrons produced go on the reactor blanket which is made of fuel for the multiplication of the reaction and of long-lived actinides or fission products for the transmutation to obtain short-lived radioisotopes and stable nuclei. The use of an external neutron source makes the sub-critical reactor more secure.

In figure 0-2 a closed fuel cycle system is shown as proposed in the Accelerator Transmutation of Waste project (ATW) [3, 4]. The transmuter is integrated in the fuel cycle system. Indeed, a spent fuel recycling is required before the transmutation. It is a chemical separation to isolate transuranics and long-lived radioisotopes. Then, the transmutation produces power and a small part (~10%) is used to feed the accelerator and the great majority (~90%) is provided to the grid.

Figure 0-1: Schematic principle of the Energy Amplifier taken from [5].

Figure 0-2: Technical working groups of the ATW taken from [4].

This work will include various points:

In chapter 1, we recall quickly the general basis of the spallation reaction as well as the various approaches used in the codes. We will study more particularly the physical models applied in the code INCL4 [6] for the intranuclear cascade and in the code ABLA [7, 8] for the evaporation model. The main programs and how they are connected in practice will be described in chapter 2. The main program for performing the simulation of the spallation reaction and the following transport calculations is MCNPX. The main objective of this study is the validation of the implementation of the codes of Cugnon and Schmidt in the new beta version 2.5e of MCNPX and it is developed in chapter 3. The spallation cross sections obtained for different proton energies compared to experimental data will be presented in chapter 3 too. Then, the chapter 4 is dedicated to the LiSoR experiment [9] which is a supporting experiment of the MEGAPIE project [1, 10]. Finally chapter 5 contains a comparison between two codes KAPROS [11] with the modul BURNUP[12] and ORIHET3 [13], which calculate the decay of isotopes. The physical basis of each program and the method to use them in practice is explained.

Chapter 1. Physicals Models

E. O. Lawrence [14] had observed the spallation reaction for the first time in 1947. In 1952 the idea to use the spallation reaction as external source of a system of energy production is developped. This sources of spallation neutron are important not only for the transmutation of waste, but can be used for irradiation studies or material structure analyses and for tritium production units [15].

This chapter will describe with more details the general features of the spallation reaction and its two stages. At the same time, we will give the charasteristics of a few modelisation codes which will be used in this work.

1.1. The spallation reaction

1.1.1. Mechanism and features

The spallation reaction can be described as an interaction between a high energy light nucleus (neutron, proton...) and a target heavy nucleus [16, 17]. The range of energy of the incoming particles varies from a few hundreds of MeV to a few GeV per nucleon. At these energies, the mechanism can be modeled following the idea of R. Serber [18]. He considers that the reaction can be separated in two different steps: in the first, the wavelength associated with a projectile of a few hundreds of MeV is about 10^{-14} cm. This length is smaller than the typical inter-nucleonic distances in the target core (~ 1 fm= 10^{-13} cm). The projectile sees also the nucleons in the nucleus as individual particles and the reaction is a series of nucleon-nucleon collisions. This stage is called intranuclear cascade. These successive collisions involve the ejection of a few nucleons and the repartition of a part of the incoming energy on a big number of nucleons and that leads to the excitation of this pre-fragment via a process of evaporation which may include the fission. If the particles (see figure 1-3) ejected during the

two stages have enough energy, they can involve other spallation reaction with near nucleus of the target as the figure 1-1 shows it.

Figure 1-1: The spallation reaction integrated in a thick target.

The figure 1-2 describes the different stages and their durations: The intranuclear cascade is a very quick reaction and for the total cascade (propagation time of the incoming nucleon and a few collisions) the time is approximately 10^{-22} s. The second stage is the de-excitation of the nucleus (pre-fragment) via slower processes: the evaporation of particles (τ =10⁻¹⁹ s), possibly the fission and γ and β radiations when the excitation energy is lower than the emission threshold of particles (τ =10⁻¹² s until a second).

Figure 1-2: The different stages and their durations of the spallation reaction [19].

1.1.2. The Intra Nuclear Cascade INC

As mentioned before, the mechanism of a spallation reaction can be divided in two stages (see figure 1-3). The first is the one of nucleon-nucleon collisions, called Intra Nuclear Cascade. The nucleon undergoes a succession of collisions with other nucleons. There are different ways for the modeling of these processes. Indeed different cascade models have been developed for MCNPX as Bertini, ISABEL, CEM and INCL4, based on the Cugnon codes. The code developed by Bertini is one of the first codes of intranuclear cascade [20, 21]. ISABEL is more recent and utilizes similar principles as the Bertini code but with improvements in the definition of the nuclear density. Bertini considers the nucleus as three concentric spheres with different densities whereas ISABEL considers 16 areas. CEM is an improvement of the Dubna intranuclear cascade code [22]. INCL4 was developed by J. Cugnon [6] and we study the characteristics in the section 1.2.

Figure 1-3: The spallation mechanism.

In the Bertini and ISABEL models, the cascade may be followed by a pre-equilibrium stage, which is shortly described in the next section.

1.1.3. The pre-equilibrium

Between the cascade and the de-excitation, there is an intermediate state called preequilibrium. This stage is characterized by the emission of particles as n, p, d, t, ³He, ⁴He with high energy. These particles of pre-equilibrium have kinetic energy higher than those of the particles emitted during the de-excitation.

The goal of the insertion of a pre-equilibrium code between the cascade and the evaporation is to decrease the energy of the pre-fragment with the emission of rapid particles. It allows increasing the production of residues near the projectile and decreasing the residues more distant of the projectile at the end of the evaporation.

This effect improves the results of the Bertini-Dressner code with the experimental data. The Bertini and ISABEL options can be coupled with a pre-equilibrium intermediate stage. In contrary, INCL4 makes by itself the transition from the cascade to the thermalisation of the pre-fragment thanks to its stop criterion (described in section 1.2.1).

1.1.4. The de-excitation

The first step of the spallation reaction produces an excited nucleus, called pre-fragment, which must decrease its energy level. Thus, the second step is the evaporation of light particles and/or fission.

There exist 3 different ways for the de-excitation namely the multifragmentation, the fission and the evaporation. The probabilities of these possibilities depend on the nature of the nucleus and on the considered energy.

The multifragmentation:

With sufficient energy, near the energy of separation of the nucleus, mechanical instabilities break the nucleus in several fragments (more than two). The higher the energy is, the larger the number of fragments will be and their size will be small. This mode of de-excitation is principally present when there is a nucleus-nucleus collision. We will neglect this mode in our study proton on lead with 600-1000 MeV.

The fission:

Even in the case of a not very fissile nucleus, the available energy can lead to the fission of the nuclei in two fragments. We speak of "hot" fission for energy higher than 50 MeV. But, this phenomenon is remarkable only for nuclei of charge number higher than 75.

The evaporation:

The pre-fragment de-excites emitting principally nucleons, particles (d, t, ³He α) or light fragments (Isotopes of Lithium or Beryllium). The name evaporation comes from the similarity with the emission of molecules by a liquid in equilibrium with his gaseous form. We obtain also residual nucleus whose difference in mass compared to the pre-fragment depends directly on the energy deposited at the time of the first reaction. That is the mode we will observe in our study.

1.2. The Cugnon-Schmidt Model

1.2.1. The Cugnon cascade: INCL4

The Cugnon cascade is recent and relatively different of the earlier approach (Bertini, ISABEL and CEM models). The Cugnon cascade [6] was already described in references [15, 17, 23] and the main characteristics are recalled in this section. All the features of the INCL4 cascade are discussed in [24].

The medium

The type of medium is the main criterion to differentiate the different codes. The Bertini and ISABEL codes were based on a nuclear model in which the nucleon density within the nucleus was supposed constant within certain areas (see section 1.1.2) and where the nucleons are not considered individually except the cascade particles. The INCL4 code doesn't consider the nucleus as a continuous medium but as a bundle of individual nucleons moving in a given potential.

The criterion of collision

To determinate the moment where the interaction proton-nucleon has to take place two approaches are often used. In the beginning, the particles are propagating freely until the distance between two of them is lower than a preset minimal distance d_{ij}^{\min} (INCL4 code).

$$d_{ij}^{\min} = \sqrt{\frac{\boldsymbol{s}_{ij}(\boldsymbol{s}_{ij})}{p}}$$
(1.1)

where $s_{ij}(s_{ij})$ is the total interaction cross section at the available energy s_{ij} in the centre of mass system.

A radically different approach considers the nucleus as a continuous medium in which the particles have a mean free path. After this path, they collide with a nucleon which takes itself a free course and so on (Bertini and ISABEL codes). The time interval is given by the minimal value of:

$$\Delta t = \min\left(\frac{\langle I_i \rangle}{nb_i}\right) \tag{1.2}$$

where $\langle I_i \rangle$ is the mean free path of each cascade particles, b_i is their velocity and *n* is a parameter fixed to n = 20.

The stopping time

The cascade is considered as finished when the nucleus reached a balanced thermal state. Here too, two approaches exist. One is based on time: the equilibrium state is supposed to be reached with the end of one given time (INCL4 code). The new version integrates a dependence of the stopping time with the target nucleus given by:

$$t_{stop} = f_{stop} t_0 \left(\frac{A_T}{208}\right)^{0.16}$$
(1.3)

where f_{stop} is an adjustable parameter and the default value is equal to 1, $t_0 = 70 \ fm/c$, and A_T is the atom mass of the target nucleus.

The other is based on the energy: the cascade is considered finished when all the nucleons have an energy lower than a definite threshold called cut-off energy E_{cut} (Bertini and ISABEL codes).

The nuclear surface

The treatment of the nuclear surface parameter is an important feature of the INCL4 code. In the earlier options of MCNPX (Bertini, ISABEL codes) the collisions of the nucleons take place in a mean field described by a potential well with an abrupt surface:

$$R = 1.2A^{\frac{1}{3}} \tag{1.4}$$

In the INCL4 code the density is given by a Wood-Saxon function:

$$r = \begin{cases} \frac{r_0}{1 + \exp(\frac{r - R_0}{a})} & \text{for } r < R_{\max} \\ 0 & \text{for } r > R_{\max} \end{cases}$$
(1.5)

Where

$$R_0 = \left(2.745 \cdot 10^{-4} A_T + 1.063\right) A_T^{\frac{1}{3}} fm$$
 (1.6)

$$a = 0.510 + 1.63 \cdot 10^{-4} A_T fm$$
(1.7)

$$R_{\max} = R_0 + 8a \tag{1.8}$$

The Pauli blocking

The Pauli principle means that there cannot be, in an atomic nucleus, two nucleons which have the same characterizing features. These characteristics are the type of nucleon (neutron or proton), the energy state, the angular momentum (spin) and the z-component of the spin. In the Fermi gas model for the atomic nucleus, which is put in the computations for the intranuclear cascade, all possible nucleon states are occupied. The Fermi energy is the highest energy, which a nucleon can have in the nucleus in this Fermi gas model [25]. If during the intranuclear cascade a nucleon comes out, whose energy is smaller than the Fermi energy, and if there is already a nucleon in the nucleus with the same quantum numbers, thus the state is already occupied. With the "strict" application of the Pauli principle therefore later all processes are excluded, in which a nucleon occurs with an energy, which is smaller than Fermi energy. However too many processes are excluded. In the course of the intranuclear

cascade nucleons from the atomic nucleus can be pushed out, so that their place becomes free and could be again occupied. This is considered in the Cugnon model with the "statistic" application of the Pauli principle. In this case, statistic considerations are employed. References [26, 27] give more details on the "statistic" application of the Pauli principle

There are in Bertini and ISABEL models no input options, in order to control the application of the Pauli of principle. In both models the "strict" Pauli principle is used. In contrary to the INCL4 model which allows choosing between Pauli "strict" and Pauli "statistic".

Physics process	Bertini	ISABEL	INCL4
Intranuclear cascade Model	Bertini INC	ISABEL INC	improved Cugnon INC
Medium	continuous	continuous	discret
Method	<i>INC+EQ</i> or <i>INC+EQ+PE</i>	<i>INC+EQ</i> or <i>INC+EQ+PE</i>	INC+EQ
Nuclear density distribution	Density in 3 areas	Density in 16 areas	Wood-Saxon density
Collision criterion	Mean free path	Mean free path	Minimum approach distance
Stop criterion	Energy	Energy	Time
Pauli blocking	Strict	Strict	Statistic

The following table 1-1 recapitulates the main differences between the intranuclear cascades.

Table 1-1: Main differences between the intranuclear cascades.

1.2.2. The evaporation model of Schmidt: ABLA

There are several evaporation models and they are all based on the Weisskopf-Ewing formalism [28, 29]. This statistic model considers two inverse processes: The emission of a particle $b (X \rightarrow Y + b)$ and its capture $(Y + b \rightarrow X)$. The emission probability per energy unit of the particle *b* with the energy *e* is written:

$$P_{b}(e) de = \frac{r_{f}(E_{Y}^{*})}{r_{i}(E_{X}^{*})} \cdot (2s_{b}+1) \cdot (4p \ p^{2} \ dp \ / \ h^{3}) \cdot s_{c}(e)$$
(1.9)

Where

$$E_{Y}^{*} = E_{X}^{*} - Q - e \tag{1.10}$$

Where

 s_b : Spin of particle b

 r_i : The level density of the nucleus X

 r_f : The level density of the nucleus Y

Q: The difference of mass excess

 $4p p^2 dp/h^3$: The number of states with a momentum between p and p + dp

 $s_c(e)$: The capture cross section for the particle *b* by the nucleus Y

 E_{Y}^{*} : The energy of the nucleus Y

 E_x^* : The energy of the nucleus X

The emission probability depends on state density r and capture cross-section s_c .

The code ABLA was developed at the GSI at the beginning of the eighties by K.H Schmidt and his collaborators [7, 8] and reference [26] presents the basis. In this code, the particles which can be evaporated are only n, p, and alpha particles in contrary to the Dresner code which allows the evaporation of p, n, d, ³H, ³He, ⁴He.

The most recent parameterizations of the density level and of the parameter of the density levels are in the article of Junghans *et al.* [30].

$$\mathbf{r}(E) = \frac{\mathbf{p}^{1/2}}{12} \frac{e^{S}}{a^{1/4} E^{5/4}}$$
(1.11)

with

$$S = 2[a'(E + dU'.f(E) + dP'.h(E))]^{1/2}$$
(1.12)

The functions f(E)/E and h(E)/E tend toward 0 at high energy and toward 1 at low energy. dU' accounts for the shell effect and dP' for the pairing.

The parameter a' is another parameterization by Ignatyuk:

$$a' = a_{v}A + a_{s}A^{2/3}B_{s} + a_{k}A^{1/3}B_{K}$$
(1.13)

with $a_v = 0.073 MeV^{-1}$ the volume coefficient, $a_s = 0.095 MeV^{-1}$ the surface coefficient and $a_k = 0 MeV^{-1}$ the coefficient of bending. B_s represents the surface of the nucleus normalized to a spherical configuration, and B_k the integrated curve of the nucleus normalized to a spherical configuration.

The capture cross sections are not used in the code ABLA. It has one consequence: the particles spectrum must be imposed. In the code ABLA, this spectrum is Maxwellian.

The following table 1-2 summarized the main differences between the two codes of Dresner and Schmidt.

DRESNER	ABLA
Evaporation of n, p, d, t, ³ He, ⁴ He	Evaporation of n, p and ⁴ He
State density parameter <i>a</i> à A/8 (Ignatyuk)	State density parameter $a\dot{a}$ A/12
Decrease of the coulomb barrier with E* Where E* is the excitation energy of the pre-fragment	Coulomb barriers more realistic

Table 1-2: Main differences between the evaporation models.

Chapter 2. Simulation codes

To study this complex reaction, it is necessary to use simulations which describe the spallation reaction and the transport of particles in a thick target. In a thick target the interaction between a particle and the material is very complex because several reactions at different energy levels can take place.

The simulation of the mechanism of the spallation reaction is very complicated and no analytic solution could be found. That's why the statistic treatment with the Monte Carlo method is the applied option. All the existing codes are based on this Monte Carlo method.

The Monte Carlo methods consist of experimental or data-processing simulations of mathematical or physical problems, based on the pulling of random numbers. Generally one uses in fact a series of pseudo-random numbers generated by specialized algorithms. The properties of these series are very close to those of a true random walk. To obtain statistically reliable results, it is necessary to evaluate a lot of histories.

2.1. The Cugnon code in the Stand-alone version

This program has been developed by J. Cugnon at the University of Liege. He uses his model of the intra nuclear cascade. The input file for Cugnon Stand-alone code, shown in table 2-1 allows running a job. The main input parameters are the nuclear potential, f_{stop} which controls the stopping time, *NOSURF* which controls the nuclear surface, *XFOISA* which controlls the parameter of maximum impact and the Pauli blocking. Their meanings are described below.

The nuclear potential

The nuclear potential or potential depth is coded in the Cugnon code in Stand-alone version by V_0 and the default value is fixed to 45 MeV. It is the value generally used for heavy nucleus. Reference [31] gives a parameterization of the potential depth in the valley of stability as a function of the mass number. The equation system (2.1) shows this parametrization. The result for the lead ($V_0=45.33MeV$) is in very good agreement with the default value applied in the Cugnon code in Stand-alone version and in MCNPX.

$$V_{0}=50 MeV A<40$$

$$V_{0}=(53.47-0.08667A) MeV 4070$$

$$V_{0}=(48.45-0.015A) MeV 70210$$

$$(2.1)$$

The stopping time

The stopping time is the time at which the cascade is stopped to proceed with evaporation. This parameter is already described in section 1.2.1. The stopping time is controlled by the parameter f_{stop} and the default value is 1.

The nuclear surface

This nuclear surface specification is a new parameter which introduces a diffuse nuclear surface, corresponding to a Saxon-Woods density distribution as explained in section 1.2.1 (see formula (1.5)).

The input parameter in the code is *NOSURF* and allows controlling the type of surface. The different possibilities are:

NOSURF = 1 : Sharp density (hard sphere).

NOSURF = 0: Wood-Saxon density and stopping time without impact dependence.

NOSURF = -1: Wood-Saxon density and stopping time with impact dependence.

NOSURF = -2: Wood-Saxon density and INCL4 stopping time.

The parameter of maximum impact

In the code, the parameter *XFOISA* allows defining the parameter of maximum impact B_{max} to sprinkle by particles all the diffuse surface of the nucleus. We have also:

$$B_{\max} = R_0 + XFOISA \times a \tag{2.2}$$

where a is the diffuseness.

 R_0 is the average radius of the nucleus.

The geometrical cross section is then:

$$\boldsymbol{s}_{geo} = 10\boldsymbol{p} \; \boldsymbol{B}_{max}^2 \quad [mb] \tag{2.3}$$

The factor 10 is due to the unit conversion. Indeed, $[fm]^2 = 10[mb]$

The Pauli Blocking

The input parameter which controls the Pauli blocking in the code is NPAULSTR

NPAULSTR = 1 : Pauli "strict".

NPAULSTR = 0 : Pauli "statistic".

NPAULSTR = -1: No Pauli.

Input value	Meaning	
38035	5 First random number	
150000 0 1	Number of shoots	
	Initialization of common hazard when =1	
	Print number of shoots in the output file	
1 1000	Type of shot (1:proton, 2:neutron, 6:deuton)	
	Total kinetic energy (MeV)	
208 82	Atomic mass A	
	Atomic number Z	
45 1.0 -2 8 0	Nuclear potential (MeV) \neg	
	Stopping time See the	
	NOSURF explanations	
	XFOISA below	
	NPAULSTR	
1871562739 1882631241 1508947907	There are 20 different seeds collected at the	
1446782547 403824905 1754250443	1443 time of spurious shutdown. There are tests in	
375560615 1613533623 1015852965	the program (conservation of A, Z, of energy	
522662927 1673861985 1477557897	and impulse) which stopp the job and record	
44631827 340601027 910049051 62345	345 the state of seeds. Then one can launch the	
72345 1472555179 452820949	program directly on this event to avoid the	
335151537	problem by putting Initialization of common	
	hazard =1.	

Table 2-1: Cugnon Stand-alone input file and meaning of the different terms [32].

2.2. MCNPX

MCNPX means Monte Carlo with N Particles eXtended [33]. MCNPX comes from coupling of two previous codes: LAHET (Los Alamos High Energy Transport Code [34]) which treats the high energy processes and MCNP which allows taking into account the transport of the particles. Further details about the history, the capabilities of the codes and the implementation of the different codes are explained in reference [23].

The new beta-version 2.5e of MCNPX offers new possible physics models:

- The intranuclear cascade of Cugnon: INCL4. It is an adaptation of the code of Cugnon to MCNPX.
- The evaporation model of K. H. Schmidt ABLA.

The calculations are performed with MCNPX version 2.5.e. Its new capabilities and extensions are described in [35].

The parameters described in section 1.2.1 and 2.1 namely the nuclear potential, the stopping factor which controls the stopping time by the equation (1.3) of section 1.2.1, the nuclear surface, the parameter of maximum impact and the Pauli blocking can be controlled in MCNPX 2.5e by the LCC card (see figure 2-1)

The default values for the different parameters described in [36] are:

The nuclear potential is set to 45V, the stopping factor to 1, the nuclear surface to -2, the parameter of maximum impact to 8 and the Pauli blocking to 0 what corresponds to Pauli "statistic".

MCNPX test problem
c c 1000 MeV pencil beam of protons on the axis of a spherical c Pb208 target of 50cm radius. c Production Cross Sections calculation. c
c Cells
c 1 1 -11.34 -1 2 0 1
C c Surfaces
C
1 so 50.0
C
C
ml 82208.60c 1
c c Source
c sdef erg=1000 par=9 pos=0 0 0 vec=0 0 1 dir=1 ssw 1 CEL 1
c c Options
c iron in 10
imp:h10
physin 1088
physin 1088 mode h
histo 1
lca 1 1 0 0023 1 1 0 -2 2
lea 1 4 1 0 1 0 2 1
lcc 1 45 80 -2
c Tallies
C
c
print
nps 150000

Figure 2-1: *Example of an MCNPX input file for calculating the production cross section on* ²⁰⁸*Pb irradiated by a 1 GeV proton beam.*

2.3. Structure and sequences of the programs

An explanation is useful to clearly understand the organization of the programs and their sequence. Indeed, it is necessary to specify the input files and the output files of each program, the files used during the calculation, and to see how the various programs follow one another.

2.3.1. MCNPX

After running MCNPX, we use HTAPE3X to obtain the residual nuclei production per source proton. HTAPE3X is an auxillary program in the MCNPX package. And then, the program RORIHET creates the input tables as a function of the mass number or of the charge number for the public domain plotting program XMGRACE.

Figure 2-2: Sequence of the programs to obtain the spallation yields as a function of the mass number A or of the charge number Z.

2.3.2. The Cugnon code in the Stand-alone version

The file avv_zvv.out is created by a local extension of the Cugnon code in Stand-alone version at the FZK. The program RCU creates input tables as a function of the mass number (cugnon_a.dat) and of the charge number (cugnon_z.dat) for the public domain program XMGRACE.

Figure 2-3: Sequence of the programs to use the Cugnon code in Stand-alone version.

2.3.3. Plot of isotopes

After runnig MCNPX and HTAPE3X, we use the modul of HETMIX of KAPROS to create the input table (HETMIX_1.dat) for the for the public domain program XMGRACE. It is necessary to create the adapted "plottab.dat" file to indicate the studied isotopes.

Figure 2-4: Sequence of the programs to obtain a view of the spallation yields per isotopes.

Chapter 3. Comparison of MCNPX with the INCL4-ABLA model and the Cugnon-Schmidt code in the Stand-alone version

The purpose of this part is the comparison of the Cugnon-Schmidt in Stand-alone program and INCL4-ABLA implementation in MCNPX.

3.1. Comparison of the two codes

As shown on figure 3-1, MCNPX offers two methods to calculate the cross sections and the residual nuclei distributions: The first one was applied previously in [23] and evaluates the data of the binary history output file *histp* from MCNPX via the program HTAPE3X (HTAPE3X is a part of the MCNPX package) [33, 34]. The second possibility was advised to us by [37] and is to request in the input file of MCNPX evaluation tally 8, described in [35]. This option calculates and produces directly in the output file the residual nuclei production per source proton. This tally is available only since the new beta version MCNPX 2.5e.

Figure 3-1: Two different methods of treatments to obtain the spallation yields in MCNPX.

We have checked that the two methods give exactly the same distribution before normalization. The output files of HTAPE3X and of the direct computation with tally 8 option can be consulted in annex A. These calculations were obtained by irradiation of a ²⁰⁸Pb target at 1 GeV protons beam and by running 300.000 particles.

To obtain the spallation yields, it is necessary to normalize the distributions. We have analyzed how the normalization factor must be determined according to the type of reactions which one studies. When a proton collides with a target nucleus in a non-elastic reaction, this collision can give rise to a cascade (spallation reaction) but, in other cases, the incoming proton can pass through the target nuclei without any interaction (transparency). The input parameters allow us to choose between a forced cascade or cascade with transparencies.

There are four input cards (LCA, LCB, LEA and LEB) in MCNPX [33] which allow the user controlling the physics options. We will be interested more particularly in the LCA card. The LCA card is used to select the Bertini, ISABEL, CEM or INCL4 models, as well as to set certain parameter used in these models which are discussed thereafter.

We want to obtain the cross sections. It means that only the first interaction of the source particle is taken into account. Thus, the transport and the slowing-down are turned off. This option is controlled by the eighth parameter of the LCA card, called NOACT. There are two values of this parameter which allow obtaining the cross sections. It is -1 and -2. NOACT equal to -1 is used to compute with HTAPE3X code. The NOACT equal to -2 is used to compute double-differential cross sections and residual nuclei with the tally 8 option. If a cascade is forced, we must use the reaction cross section to normalize the yields.

One can use as a normalization factor, either

$$\frac{s_{reaction}}{N_{particles}}$$
 (3.1)

Or

$$\frac{S_{geo}}{N_{particles} - N_{transparencies}}$$
(3.2)

with

$$\boldsymbol{s}_{geo} = \boldsymbol{p}\boldsymbol{R}^2 \tag{3.3}.$$

In section 3.2 the geometrical cross section S_{geo} is investigated in more detail.

In the Cugnon code in the stand-alone version, the reaction is not forced (there are transparencies) and thus, the use of geometrical cross section for the normalization is correct. In contrary, in MCNPX, to obtain cross sections, we must set the NOACT parameter to -1 or -2 which corresponds to a forced cascade. So, it is not possible to normalize with the geometrical cross section. The value of the reaction cross section coming from the Bertini model is *1732 mb*. This value is obtained from the LAHET output file which gives the number of transparencies and the geometrical cross section. Then:

$$\boldsymbol{S}_{reaction} = \frac{N_{particles} - N_{transparencies}}{N_{particles}} \boldsymbol{S}_{geo}$$
(3.4)

The INCL4 model gives a cross section reaction value equal to *1793 mb*. The difference is approximately of 3%. Thus we can conclude that the reaction cross section is not very different according to the model. In the calculations the reaction cross section is fixed in an early stage to *1740 mb*.

A second input parameter for MCNPX is relevant for this question. It is the first parameter of the LCA card, called IELAS. It controls if the elastic scattering for neutrons and protons are taken into account. The program XSEX3 which is a part of the MCNPX package [33] could provide the number of elastic scattering but the conditions to obtain this value are not yet completely clear, so we can not present results normalized with this method. But in the case where the number of elastic scattering is given we can normalize the yields. Indeed, it is necessary to subtract them to the number of events.

So, to summarize:

- If a cascade is forced, we must normalize with the reaction cross section.
- If a cascade is not forced (there are transparencies), we can normalize with the geometrical cross section.
- If the elastic scattering reactions are taken into account, we need their number and then we can normalize.

The calculations with NOACT equal to -2 give a number of nonzero history tallies different of the number of particles and it must be taken into account in the normalization.

As a conclusion we recommend to use no elastic scattering for protons (IELAS=0 or 1) and to force the reactions with the NOACT parameter recommended for the tally 8 option (NOACT=-2). For an example, that corresponds to the following LCA card with the INCL4 model:

The normalization factor corresponding to this card is

$$\frac{\text{Number of particles}}{\text{Number of nuclear interactions}} \boldsymbol{s}_{reaction}$$
(3.5)

IELAS	NOACT	Normalization
1	-1	Reaction cross section
1	-2	Reaction cross section
2	-1	Geometrical cross section
2	-2	Geometrical cross section

Table 3-1: Summary of the different combinations of LCA parameters and the normalization associated.

Model	Bertini	Cugnon
Reaction cross section [mb]	1732	1793

Table 3-2: Reaction cross section for the Bertini code and for the Cugnon code.

Perspectives:

- An interesting extension would be to obtain in a reliable way the number of elastic scattering and to check the normalization.
- Then, more precise determination of the reaction cross section for the different physical models is necessary.
- Signification of using the number of nuclear nonzero history tallies different of the events.

The three following figures 3-2, 3-3, 3-4 show that the normalization with the geometrical cross section with NOACT equal to -1 or -2 is incorrect. On the three figures, the green curve represents the results of the calculations for the three models (Bertini, ISABEL and INCL4+ABLA) parameterized by IELAS=2 (with elastic scattering for protons), NOACT=-1 and normalized with the geometrical cross section. The blue one is parameterized by IELAS=2, NOACT=-1 and is normalized with the geometrical cross section. The red one represents a non-elastic reaction (IELAS=1), parameterized by NOACT=-2 and normalized with the reaction cross section. The last black one is parameterized by IELAS=1, NOACT=-1 and is normalized with the reaction cross section. The green curve corresponds to the card used in [23]. For the ISABEL model it was checked that the yields normalized with the geometrical cross section give good results with experimental data. The figure 3-2 for the ISABEL model shows that the green curve is in very good agreement on the spallation part of the curve with experimental data, but the other parameters combinations show similar agreement. Now, let we consider figure 3-3 and figure 3-4, which represent the spallation yields for the Bertini and INCL4+ABLA models respectively. They present us a difference between the curves normalized with the geometrical cross section and the others normalized with the reaction cross section. We observe a difference with the experimental data from GSI which can be up to 18% for the Bertini model and to 23% for the INCL4+ABLA one. It means that the results obtained by comparison of the ISABEL model and the experimental data were a coincidence because that is found only for this model.

Figure 3-2: Comparison of with MCNPX computed (ISABEL model) spallation yields obtained with different combinations of LCA parameters and experimental spallation yields (GSI, ISTC). Mass yields in millibarn [mb] as a function of the mass number A.

Figure 3-3: Comparison of with MCNPX computed (BERTINI model) spallation yields obtained with different combinations of LCA parameters and experimental spallation yields (GSI, ISTC). Mass yields in millibarn [mb] as a function of the mass number A.

Figure 3-4: Comparison of with MCNPX computed (INCL4+ABLA model) spallation yields obtained with different combinations of LCA parameters and experimental spallation yields (GSI, ISTC). Mass yields in millibarn [mb] as a function of the mass number A.
3.2. Investigations related to the normalization factor

To compare the data given by the output file opt8a from the HTAPE3X program of the MCNPX package with experimental data, we need the normalization factor. The purpose of this part is the analysis of the normalization factor for spallation yields.

In order to get confidence in the results of simulation codes, validation by comparison with experimental data is necessary. The qualification of the simulation of the reaction products produced by irradiation of a target by high energetic protons is still in progress. Two types of experiments are applied for this purpose: thin or thick targets. In the thin target experiments, only primary reactions are measured, whereas in thick target reaction cascades are investigated. Both types of investigation are discussed in reference [23]. In this section, the validation is analyzed in more detail. The considered target experiments are carried out by direct proton irradiation (ISTC) or by the inverse kinematic method (GSI). The results of these experiments are cross sections for spallation products. As the simulation code MCNPX and its evaluation program HTAPE3X calculates spallation products yields per source proton, a normalization factor is required for the comparison. This normalization factor is discussed in section 3.2.1 and it is show that the geometrical cross sections s

3.2.1. Formulations for the nucleus geometry

The formulation and the description of the geometry of the nucleus influence the distribution of the spallation yields. Now we analyze several formulations for the geometry of nucleus.

3.2.1.1. Range of the nucleus radius

The geometrical cross section is given by the following formula:

$$\boldsymbol{s}_{geo} = \boldsymbol{p} \, \boldsymbol{R}^2 \tag{3.6}$$

where R is the radius of the nuclei.

Thus, to obtain the geometrical cross section, it is necessary to determine the radius R of the nuclei.

It is considered, as a first approximation, that the nucleus has a spherical form and that it has an incompressible volume. The volume of the hydrogen nuclei is noted V_0 :

$$V_0 = \frac{4}{3} p R^3$$
 (3.7)

If one considers that the volume of the atomic nucleus is proportional to the number of nucleons which constitute the nucleus:

$$V = AV_0 \tag{3.8}$$

The radius of a nucleus is proportional to the cubic root of the number of particles. One deduces:

$$R = r_0 A^{\frac{1}{3}} \tag{3.9}$$

where $r_0 = 1.2 \ fm$ from [38] $r_0 = 1.43 \ fm$ from [39]

The exact value of r_0 is somewhat contentious, and different types of experiment give values of r_0 ranging from 1.07 to 1.6 [39]. As an example, Bethe has found $r_0 = 1.47 \cdot 10^{-13} cm$ [40], and Barkas $r_0 = 1.43 \cdot 10^{-13} cm$ [41]. The geometrical cross sections obtained with this different value r_0 are summarized in the table 3-4. We can observe that the best result in comparison with the Cugnon and ISABEL values is obtained with $r_0 = 1.6 fm$.

From other experiments, nuclear radius can be found from measurements of the nuclear density. This can be shown on the figure 3-5 using a formula which is a little bit different from the simple formula, but gives essentially the same results as with $r_0 = 1.43 \cdot 10^{-13} \text{ cm}$:

$$r = 1.07 A^{\frac{1}{3}} + 2.4 \ fm \tag{3.10}$$

One obtains 2400 mb for the lead.

Figure 3-5: Nuclear density as a function of the distance from the centre of nucleus which leads to the formula (3.9).

²⁰⁸ Pb	Value from LAHET with ISABEL
Geometrical cross section [mb]	2760

Table 3-3: Geometrical cross section from LAHET for the ISABEL model.

²⁰⁸ Pb			Ranging of r ₀		
r ₀	1,07	1,21	1,27	1,43	1,6
$R=r_0A^{1\setminus 3}$	6,34	7,17	7,52	8,47	9,48
Geometrical cross section [mb]	1262,68	1614,72	1778,82	2255,26	2823,35

Difference with Cugnon value	66,71%	57,43%	53,10%	40,54%	25,56%
Difference with ISABEL value	54,25%	41,50%	35,55%	18,29%	2,30%

Table 3-4: Geometrical cross sections calculated with formulas from bibliography.

3.2.1.2. The parameterization of J. Cugnon

The parameterization which is used in the Cugnon Stand-alone code is:

$$\begin{cases} R_0 = (2.745 .10^{-4} A_T + 1.063) A_T^{1/3} fm \\ R_{\text{max}} = R_0 + 8 a \end{cases}$$
(3.11)

with

$$a = 0.510 + 0.63.10^{-4} A_T fm$$
(3.12)

where a is the diffuseness.

This parameterization associated to the formula of the geometrical cross section (3.6) gives a value of *3793 mb* for the geometrical cross section for the Cugnon model. The input value, the intermediary calculations and the result for the geometrical cross section for the Cugnon model is shown in table 3-5 and 3-6.

²⁰⁸ Pb	
Atomic mass A	208
Atomic number Z	82
Impact parameter	8
Diffuseness a [calculated by Cugnon]	0,544

Table 3-5: Input data for the calculation of the geometrical cross section for the Cugnon model.

²⁰⁸ Pb	Formula from Cugnon Stand-alone code
R _{max} [fm]	10,99
R ₀ [fm]	6,64
Geometrical cross section [mb]	3792,90

Table 3-6: Geometrical cross section for ${}^{208}Pb$ calculated by Cugnon according to the formula (3.11)

3.2.1.3. Other parametrizations

There exists some others parameterizations as the one of L. Sihver [42], the similar formulas of Kox [43] and Shen [44] and the one of R. K. Tripathi [45].

The Sihver formula is independent of the energy. On the contrary, the parameterizations of Kox, Shen and Tripathi include an energy term.

The Sihver formula gives a value of 2287 *mb* what represents a difference of 40% with the value from Cugnon and 17% with the value from ISABEL (see table 3-7).

²⁰⁸ Pb	Sihver formula
Geometrical cross section [mb]	2287

Difference with Cugnon value	40%
Difference with ISABEL value	17%

Table 3-7: Geometrical cross section for ²⁰⁸Pb calculated with the Sihver formula.

3.2.2. Comparison of the models

MCNPX applied with the physical models Bertini, CEM and ISABEL doesn't calculate the geometrical cross section. Only MCNPX applied with the Cugnon model gives this value in the printed output. The auxiliary program XSEX3 of the MCNPX package in principle can calculate these values, but up still now this program did not work properly in our system.

In the reference [23], the value from LAHET with the ISABEL model is used as the normalization factor. This value is equal to 2760 mb as it is summarized in table 3-3. For a job with the Bertini model, we obtain 2462 mb. It means that this factor depends on the physic model. That is confirmed by e-mail correspondance with A. Boudard [32]. Thus, it is necessary to take the geometric cross section of the model which is used: either 3793 mb for the INCL4 model or 2760 mb for the ISABEL model or 2464 mb for the Bertini model.

The different results for the geometrical cross section are summarized in the table 3-8.

Formula from	LAHET for Bertini	LAHET for ISABEL	Cugnon Stand-alone	Bibliography $R=1.6*A^{1/3}$	Bibliography Sihver formula
Geometrical cross section [mb]	2462	2760	3793	2823	2287

Table 3-8: *Summary of the geometrical cross section of the different models (Bertini, ISABEL and INCL4 models) and of the parametrization from the bibliography.*

3.2.3. The geometrical cross section of the Lead-Bismuth-Eutectic

Currently the target material is lead-bismuth-eutectic (LBE). It is applied in the MEGAPIE project and the supporting LiSoR experiment [9]. The LiSoR project will be discussed in more detail in chapter 4. These two projects work with a mix of lead and bismuth with specific proportions. The next point is to determine the normalization factor for this LBE. In the table 3-4, the last column which corresponds to $r_0 = 1.6 \text{ fm}$ has the smallest deviation in comparison of the two reference values (Cugnon and ISABEL models). Thus, we obtain a normalization factor of 2828 mb for a lead-bismuth mix (44% Lead and 56% Bismuth):

$$\boldsymbol{s}_{geo\ LBE} = 0.44 \times \boldsymbol{s}_{geo\ Pb} + 0.556 \times \boldsymbol{s}_{geo\ Bi} \tag{3.13}$$

3.3. Influence of input parameters

The code of Cugnon was implemented in MCNPX. The input file is described in section 2.2. In the documentation of MCNPX [36], it is written that only the potential depth V_0 and the overall factor f_{stop} can be changed, but we can also change the Pauli blocking and the value of maximum impact parameter through *XFOISA*. They are on the LCC-Card as described in the section 2.2.

It is interesting to check the influence of the main input parameters of Cugnon and to compare the results with MCNPX.

The parameters investigated are the nuclear potential and the Pauli blocking. The influences of the *XFOISA* parameter which controls the parameter of maximum impact and the f_{stop}

parameter which controls the stopping time are not studied because these two parameters are in dependence. Indeed, if a proton comes on a sphere of radius B_{max} (defined in section 2.1), the calculation of the cascade begins when the proton touches this sphere. The stopping time is defined since this time. The *XFOISA* parameter is a function of B_{max} , as mentionned the formula (2.2). Thus, the stopping time is also a function of B_{max} . So, it is not possible to change *XFOISA* (or B_{max}) without to evaluate again the stopping time and these proportions are complex.

The figure 3-6 represents the spallation yields computed by MCNPX with INCL4+ABLA model for different values of the nuclear potential, which are calculated with the formula (2.1). The red curve is obtained with V_0 =45 MeV which is the default value in MCNPX and which corresponds to the nuclides with a mass number between 70 and 210, according to [31]. The red curve is in very good agreement with the experimental data from GSI. One observes that the variation of the nuclear potential influences only the left part of the curve corresponding to the fission.

The figures 3-7 and 3-8 show the spallation yields according to the mass number obtained by irradiation of a lead target by 1 GeV proton beam computed with the Cugnon Stand-alone code and MCNPX with INCL4+ABLA for the two possibilities of Pauli blocking, namely Pauli "strict" and Pauli "statistic". Concerning the fission part, the Pauli "strict" option underestimates slightly the results compared with experimental data from GSI. The discrepancy can be up to 3%. Then, we can observe a shift between the two Pauli options on the right part of the plot corresponding to the spallation. The Pauli "strict" curve gives results higher than the Pauli "statistic" and this difference can be up to 10%. That decreases until a mass number A<185. After this point, the Pauli "statistic" curve is in very good agreement with the experiment, in contrary to the Pauli "strict" curve which underestimates the spallation cross sections up to 4%. The seven following figures from 3-9 to 3-15 show the residual nuclei productions per isotopes obtained by irradiation of a lead target by 1 GeV proton beam too, obtained with isot_plot (described in figure 2-4). All these isotopes are situated on the spallation part of the curve. One can observe the same shift on the spallation part as on figure 3-7 and 3-8. One can also notice that this shift decreases with the augmentation of the mass number and for heavy nucleus the curve underestimates a little the spallation cross sections.

So at 1 GeV proton energy, the Pauli "statistic" option gives results in better agreement with the experimental data from GSI for the fission part than the Pauli "strict" option, the Pauli "strict" option gives the best agreement for a mass number A<185 and then, for heavy nucleus, the Pauli "statistic" is the best option.

Figure 3-6: Comparison of with MCNPX computed spallation yields (INCL4+ABLA model) for three different value of the nuclear potential and experimental spallation yields (GSI, ISTC). Mass yields in millibarn [mb] as a function of the mass number A.

Figure 3-7: Comparison of with MCNPX and the Cugnon code in Stand-alone version computed spallation yields (INCL4+ABLA model) with the Pauli blocking factor set to strict and experimental spallation yields (GSI, ISTC). Mass yields in millibarn [mb] as a function of the mass number A.

Figure 3-8: Comparison of with MCNPX and the Cugnon code in Stand-alone version computed spallation yields (INCL4+ABLA model) with the Pauli blocking factor set to statistic and experimental spallation yields (GSI, ISTC). Mass yields in millibarn [mb] as a function of the mass number A.

Figure 3-9: Influence of the Pauli blocking factor on the residual nuclei production per isotopes computed with INCL4+ABLA model in MCNPX for isotopes with a charge number between 68 and 70.

Figure 3-10: Influence of the Pauli blocking factor on the residual nuclei production per isotopes computed with INCL4+ABLA model in MCNPX for isotopes with a charge number between 70 and 73.

Figure 3-11: Influence of the Pauli blocking factor on the residual nuclei production per isotopes computed with INCL4+ABLA model in MCNPX for isotopes with a charge number between 73 and 75.

Figure 3-12: Influence of the Pauli blocking factor on the residual nuclei production per isotopes computed with INCL4+ABLA model in MCNPX for isotopes with a charge number between 76 and 77.

Figure 3-13: Influence of the Pauli blocking factor on the residual nuclei production per isotopes computed with INCL4+ABLA model in MCNPX for isotopes with a charge number between 78 and 79.

Figure 3-14: Influence of the Pauli blocking factor on the residual nuclei production per isotopes computed with INCL4+ABLA model in MCNPX for isotopes with a charge number between 80 and 81.

Figure 3-15: Influence of the Pauli blocking factor on the residual nuclei production per isotopes computed with INCL4+ABLA model in MCNPX for isotopes with a charge number between 82 and 83.

3.4. Thin target experiment at 1 GeV proton energy

3.4.1. Experimental methods

The experimental data come from two sources: ISTC [46] and GSI. All the experiments from the GSI group are available in reference [47]. There are also informations about the detector FRS, the experiment, the data and their analysis.

There are two different methods to obtain the experimental data: The inverse kinematic and direct proton irradiation.

The direct kinematic is the method used at ISTC. The principle is a target irradiated by a proton beam. The benefit of this method is the possibility to use a lot of different targets. But there are also disadvantages: First the nuclei are identified with the gamma-spectroscopy, thus only the nuclei with a half-life larger than half one hour are detected and the stable nuclei are not detected. Secondly, one obtains cumulative cross sections and the results must be analyzed.

At the GSI in Darmstadt, it is the inverse kinematics which is applied. A beam of heavy nucleus is projected on a proton target. The proton target is liquid hydrogen at 20 Kelvin. This method gives direct cross section and detects all residual nuclei. The problem is the techniques. Indeed, a high energy accelerator for heavy nucleus is a complex device.

3.4.2. Check of old measurements and validation of the different physical models

These comparisons were already done in reference [23]. This section allows us validating again the MCNPX results with the experimental data at 1 GeV proton energy. The correct method and normalization to obtain the spallation yields have been presented in the previous chapter and we can do a new validation of the different model of MCNPX Bertini, ISABEL and add the INCL4+ABLA model.

Let us consider now the figure 3-16. It shows the spallation yields of ²⁰⁸Pb computed by MCNPX with the Bertini, ISABEL and INCL4+ABLA models compared to the experimental data at 1 GeV from GSI [48] and ISTC [46]. First of all, one observes that all the models have the same shape of curve as the experimental data. Indeed, there are two distinct parts on the curve: The left part corresponding to the fission and the second right part corresponding to the spallation. The Bertini model gives not very good estimation of the spallation cross sections. This discrepancy can be up to 50%. The ISABEL model is in very good agreement for the spallation part of the curve what corresponds to a mass number A>140 except a cavity for a mass number $186 \le A \le 198$. However, the ISABEL model underestimates a lot the spallation

cross sections for the fission part (A<140) and the discrepancy can be up to 70%. Let us consider now the results obtained with the INCL4+ABLA model. Its agreement with the experimental data is very good, especially for the fission part (A<120) and for the spallation part since a mass number A>175. For $120 \le A \le 137$, the INCL4+ABLA model overestimates the spallation cross sections and for $137 \le A \le 175$, it underestimates the results.

A good solution for estimating the spallation cross sections would be to use two models:

- For a mass number A<120, we recommend to use the INCL4+ABLA model.
- For a mass number 120≤A≤140, there is a hole. All the models give results with a big difference with the experimental data, but the model which gives the smaller discrepancy is ISABEL. So we recommend it for the small contributions in this range of mass number A.
- For a mass number $140 \le A \le 186$, we recommend to use the ISABEL model.
- For a mass number A>186, we recommend to use the INCL4+ABLA model.

Figure 3-16: Comparison at 1 GeV proton energy on ²⁰⁸Pb of with MCNPX computed spallation yields (Bertini, ISABEL, INCL4+ABLA models) and experimental spallation yields (GSI [48], ISTC [46]). Mass yields in millibarn [mb] as a function of the mass number A.

3.5. Evaluation of new experimental data

3.5.1. New available data

We have obtained preleminary experimental data at 600 MeV from Titarenko in the framework of the ISTC project #2002 [49] (See annex B). The independent yields of a reaction product with mass number A and charge number Z is the probability for the nuclide to be produced directly as a reaction proceeds. The cumulative yield is meant the probability for the nuclide to be produced in all the appropriate processes that can lead to its production. The experimental data show on the figures 3-17 and 3-18 are raw data, which has to be analyzed in more detail.

Recently results of 500 MeV experiments with inverse kinematic methods at GSI became available [27, 50]. The fission part [27] and the spallation [50] part are obtained independently.

3.5.2. Thin target experiment at 600 MeV proton energy

The figure 3-17 and 3-18 show us the new experimental data at 600 MeV from ISTC project #2002 [49] compared to the spallation cross sections obtained with MCNPX and the Cugnon code in Stand-alone version by irradiation of a ²⁰⁸Pb target at 600 MeV protons beam energy as a function of the mass number A (see figure 3-17) and as a function of the charge number (see figure 3-18)

One can observe a significant dispersion of the experimental data, especially for the fission part. It can be explained because it is raw data. As already said in the previous section, this experimental data must be evaluated. The next step is to analyze with more detail this data. However, one can observe that the spallation part has a shape near of the shape of the curve obtaine with the simulation codes.

Figure 3-17: Comparison at 600 MeV proton energy on ²⁰⁸Pb of with MCNPX and the Cugnon code in Stand-alone version computed spallation yields (INCL4+ABLA model) and experimental spallation yields (ISTC [49]). Mass yields in millibarn [mb] as a function of the mass number A.

Figure 3-18: Comparison at 600 MeV protons energy on ²⁰⁸Pb of with MCNPX and the Cugnon code in Stand-alone version computed spallation yields (INCL4+ABLA model) and experimental spallation yields (ISTC [49]). Charge yields in millibarn [mb] as a function of the charge number Z.

3.5.3. Thin target experiment at 500 MeV proton energy

The figure 3-19 shows us this experimental data at 500 MeV compared with the spallation yields computed at 500 MeV with MCNPX (INCL4+ABLA model) and with the Cugnon code in Stand-alone version.

• Comparison on the spallation part of the curve:

The results of the two simulation codes with the Pauli "strict" option are in very good agreement with the experiments for the spallation part. There is the same hole for a mass number $A \le 140$ as at 1 GeV protons energy.

• Comparison on the fission part of the curve:

For the fission part, one can observe a difference between the experiment and the simulation. But in reference [27], it is explained that there is a problem with this data. Indeed, these values are higher than the experimental results at 1 GeV. In reference [27], this difference is discussed and a correction is proposed which leads to good agreement with our simulations.

The influence of the Pauli blocking at 500 MeV on the spallation yields computed with the Cugnon code in Stand-alone version compared to the experimental data at 500 MeV is shown in figure 3-20. One observes that the red triangle curve corresponding to Pauli strict is in very good agreement with the experimental data. This conclusion is in agreement with the results at 1 GeV where Pauli strict gave also the best agreement with the experimental data from GSI.

Figure 3-19: Comparison of with MCNPX (INCL4+ABLA model) (red triangle) and the Cugnon code in Stand-alone version (black square) computed spallation yields at 500 MeV protons energy and experimental spallation yields at 500 MeV (GSI [27, 50]). Mass yields in millibarn [mb] as a function of the mass number A.

Figure 3-20: Comparison of with the Cugnon code in Stand-alone version computed spallation yields at 500 MeV protons energy with the Pauli blocking factor set to statistic (black square) and to strict (red triangle) and experimental spallation yields at 500 MeV (GSI [27, ,50]). Mass yields in millibarn [mb] as a function of the mass number A.

Chapter 4. LiSoR: A supporting experiment for the MEGAPIE project

4.1. Description of the LiSoR experiment

LiSoR (Liquid metal Solid metal Reaction) is an experimental program, which is supporting the MEGAPIE (1 <u>Megawatt Pilot Experiment</u>) project [1, 10]. The LiSoR experiment simulates the specific MEGAPIE conditions and is a validation step for the MEGAPIE safety assessment and analysis. The purpose is the study of the window damage and the qualification of materials under irradiation and stress and in presence of a flowing molten metal mix (Pb-Bi).

Lead-Bismuth-Eutectic (LBE) is the prime candidate to be applied as target material for MEGAPIE due to the low melting point, low vapor pressure and the satisfactory neutron production efficiency. Yet, the compatibility between LBE and structural materials under irradiation and stress has to be proved.

The figure 4-1, taken from [51], shows the test tube of the LiSoR experiment.

Figure 4-1: Test tube of the LiSoR experiment.

4.2. Simulation parameters

4.2.1. The target geometry

The figure 4-2 represents a schema of the test tube and its cross section, taken from [52]. It is the real geometry which is used for the experimental tests. The current version of MCNPX may create the geometry of the tube, but doesn't calculate the volumes of the cells. Thus, it was necessary to add to the input file a volume card ("VOL-Card") which specified our calculated volumes. The calculations of the cell volumes are summarized in annex C and the volume is in the input file for LiSoR given in table 4-1. The table 4-1 gives also the input for the geometry of the test tube and the figure 4-3 shows the visualization obtained with graphics options of MCNPX. The black numbers and the red numbers represent respectively the different surfaces and cells, defined in table 4-1.

The different cells are shown in the figure 4-3 and are defined as following:

Cell 1: The exterior of the sphere.

Cell 2: The interior of the sphere without the tube tested.

Cell 3: The segment into the tube.

Cell 4: The place for the LBE.

Cell 5: The frame of the tube.

Figure 4-2: Schema of the LiSoR test tube and its cross section.

Figure 4-3: MCNPX real geometry visualization of the LiSoR test tube cross section.

In the references [9], [53] and [54], a simplified geometry has been developed for the simulation. The cross section is represented in figure 4-4. MCNPX can calculate the volumes of this model.

Figure 4-4: LiSoR test tube cross section of the simplified geometry taken from [53].

MCNPX test problem	c
C	c Materials
c LISOR	C
c Production residual nuclei.	m1 82206.60C -0.10809
c Calls	82207.00C -0.09929 82208 60c 0 23262
C	82208.000 -0.23202 83209.60c -0.56
3 2 -7 730 -4 3 -6 5 -8 7	$m^2 = 26056 60c - 0.89414224$
4 1 -10 4776 (-8 7 -10 9 -14 13 4)	24052.60c -0.08302175
(-87-109-14 13-3):	6000.60c -0.00100511
(-87 - 109 - 13 - 12 - 4):	25055.60c -0.0038194
(-87-109-13-12-3):	14000.60c -0.00432196
(-87-109-13-12-43-5):	42000.60c -0.00954851
(-87-109 14-11 4):	23000.60c -0.00201021
(-87-109 14-11-3):	41093.60c -0.00065332
(-87-109 14-11-436)	15031.60c -0.00017087
5 2 -7.730 (-8 7 -14 13 -16 10):	28058.60c -0.00130664
(-87-1413-915):	c
(-87-1615-131912-17):	c Source
(-87-1615-201411-17):	c
(-87-1615-19-1712):	sdef x=d1 y=d2 z=-0.6 erg=72 par=9 dir=0 vec=001
(-87-161520-1711)	sp1 -41 0.1883856 0
20 (-28):	sp2 -41 0.1883856 0
(-2 - 7):	c
(-2 - 8 / 16):	c Options
(-2 - 87 - 15):	C
(-2 - 8 / -10 15 1/)	$\operatorname{Imp:n}_{imp:h} 1 1 1 1 0$
10 2	nhyen 150
C	phys.ii 150
c Surfaces	mode n h
C	histo
2 so 30	lca 2112311010
3 pz -0.05	c
4 pz 0.05	c Tallies
5 px -1	c
6 px 1	FC4 Neutron flux integrated over cell 4 (unit:particles/cm3)
7 py -20	F4:n 4
8 py 20	c 69 energy group structure from 0 MeV to 10 MeV
9 pz -0.5	E4 0. 0.010e-6 0.015e-6 0.020e-6 0.025e-6 0.030e-6 0.035e-6
10 pz 0.5	0.042e-6 0.050e-6 0.058e-6 0.067e-6 0.080e-6 0.100e-6 0.140e-6
11 c/y 0.700.5	0.180e-6 0.220e-6 0.250e-6 0.280e-6 0.300e-6 0.320e-6 0.350e-6
12 c/y -0.700.5	0.400e-6 0.500e-6 0.625e-6 0.780e-6 0.850e-6 0.910e-6 0.950e-6
13 px -0.6999	0.9/2e-0.0.996e-0.1.020e-0.1.045e-0.1.071e-0.1.097e-0.1.123e-0
14 px 0.0333 15 pz 0.6	$0.877_{0} 6.15.068_{0} 6.27.700_{0} 6.48.052_{0} 6.75.5014_{0} 6.148.728_{0} 6$
15 pz - 0.0	367 262e-6 906 898e-6 1425 1e-6 2239 45e-6 3519 1e-6 5530 e-6
17 cv 1.3	0.009118 0.01503 0.02478 0.04085 0 06734
19 px -1.2	0.111 0.183 0.3025 0.500 0.821 1.353 2.231 3.679 6.0655 150.
20 px 1.2	FO4 f e
Ĩ	c
c	print 128
c Geometry card	nps 5000000
c	prdmp 2j -1
VOL NO 8. 79.42 59.08 112950.84 1000000.	
c	

Table 4-1: MCNPX input file for LiSoR calculations with the real geometry of the test tube.

The martensitic stainless steel T91 is envisaged as window material in the MEGAPIE project through which the proton beam impinges onto the target.

The structure is made up of a rectangular steel pipe, a steel segment at the pipe center and a loop of about 25 liters of liquid Lead-Bismuth eutectic. The steel used for the pipe and for the segment is steel T91 and the composition is summarized in table 4-2. The liquid Lead-Bismuth eutectic is composed of 44% lead and 56% bismuth by weight. The lead has itself an isotopic composition shown in table 4-3 and the bismuth is pure ²⁰⁹Bi. According to [54] the lead is composed of following isotopes: ²⁰⁴Pb, ²⁰⁶Pb, ²⁰⁷Pb and ²⁰⁸Pb. Because MCNPX does not supply a neutron cross section library for the ²⁰⁴Pb, the fraction of ²⁰⁴Pb is distributed on the three other isotopes.

Fe-26	Cr-24	C-6	Mn-55	Si-14	Mo-42	V-23	Nb-41	P-15	Ni-28
89,41%	8,30%	0,10%	0,38%	0,43%	0,95%	0,20%	0,07%	0,02%	0,13%

Table 4-2: Steel T91 composition in weight percentage, taken from [9].

BISMUTH		LEAD	
Bi-209	Pb-206	Pb-207	Pb-208
56,00%	10,81%	9,93%	23,26%

Table 4-3: Coolant composition in weight percentage, taken from [54].

This real geometry will be noted RG thereafter, and the simpler geometry SG.

4.2.2. Beam parameters

Parameter	Value
Incident beam energy on target	72 MeV
Maximal beam current	50 mA
Maximal current density	$\approx 2.5 \ mA/cm^2$
Beam profile on target (Gaussian)	$\boldsymbol{s}_{x} = \boldsymbol{s}_{y} = 0.8 \ mm$

The parameters of the proton beam are summarized in the table 4-4.

Table 4-4: Beam parameters for the LiSoR irradiation experiment.

4.3. Preliminary calculations

4.3.1. The Polonium issue

The Polonium is an element produced by the capture of a neutron in a nuclei of 209 Bi and subsequent β -decay. The results of these investigations are important for the estimation of the radiotoxicity induced by the Polonium in the Lead-Bismuth targets of ADS systems [55]. Indeed, the 210 Po is an α -transmitter of fairly short half life (138 days) and is quite volatile. These two characteristics make it one of the most dangerous elements.

4.3.2. Production of Polonium isotopes in the LBE eutectic

The simulation in reference [53] was performed with the LAHET code [34] applied with the Bertini model and five million proton cascades were started. Thus, all our calculations are realized with the Bertini model and with five million proton cascades.

The Polonium production rates in lead-bismuth and the induced activity due to α -decay per coulomb are shown in Table 4-5. Polonium isotopes with atomic number between 203 and 209 were found.

4.3.2.1. Remarks on the applied units

The Gram-Atom is the quantity of an element whose weight in grams is numerically equal to the atomic weight of the element. Thus, it is proportional to the mass of the atom corresponding and the factor of proportionality is the number of Avogadro N_A . For example, 1 Gram-Atom of Carbon 12 will be 12 Grams of pure Carbon 12.

The mole is the unit of quantity of material equivalent to the sum of the Gram-Atom of the elements composing it.

The Coulomb is a unit of electrical charge equal to the amount of charge transferred by a current of 1 ampere in 1 second

The Becquerel is the standard international unit of radioactive decay and it is represented as one disintegration per second.

The units utilised by the PSI in [9] and [52] are:

- **Atoms Coulomb for the initial production rate. Gram.Atom for the intermediate production rate utilised for the calculation related to** *liter*
 the decay of the Polonium isotopes.
- $\left[\frac{Becquerel}{Coulomb}\right]$ and [Bq] for the α -activity.

The production rates come from the file opt8a generated by MCNPX and HTAPE3X. The program CRORINP changes the units and creates an adapted file for ORIHET3. For the later use of the small auxilliary program CRORINP (see figure 5-3), it is important to note that the average beam current is an intern constant in this program and that it is necessary to change it within an application for MEGAPIE or LiSoR as example.

4.3.2.2. Calculation of radioactivity

The first step will be to show how to calculate the induced α -activity at the end of the irradiation. It can be written as:

$$A_a = I \times K_a \times PR_0 \tag{4.1}$$

where A_a is the α -activity in $\left[\frac{Becquerel}{Coulomb}\right]$. *I* is the decay constants in $\lfloor s^{-1} \rfloor$. PR_0 is the initial production rate in $\left[\frac{Atoms}{Coulomb}\right]$. K_a is the branching ratio for the α -activity in [%].

The values of this branching ratio for the α -activity are taken from [56]

The decay constants 1 are calculated as following:

$$I = \frac{\ln(2)}{T_{\frac{1}{2}}}$$
(4.2)

where $T_{\frac{1}{2}}$ is the half-life in [s].

The next step is to show how to calculate the decay of the nuclei.

The time dependent evolution of the number of unstable nuclei can be written as:

$$N(t) = N_0 e^{-lt} (4.3)$$

where N_0 is the number of atoms of unstable nuclei existing at the end of the irradiation.

The number of decay corresponding to the production rate is:

$$D(t) = N_0 - N(t) = N_0 (1 - e^{-lt})$$
(4.4)

where D(t) is the number of atoms of unstable nuclei at the time t after the end of the irradiation.

The following formula allows calculating the production rate in $\left[\frac{Gram.Atom}{liter}\right]$ at different times after the end of the irradiation, taken into account the appropriate dimension conversions, to compare directly with the results of [53]:

$$PR(t) = \frac{I}{N_A \times I \times V} PR_0 \times \left(1 - e^{(-lt)}\right)$$
(4.5)

where PR(t) is the production rate at the time t in $\left[\frac{Gram.Atom}{liter}\right]$. PR_0 is the initial production rate in $\left[\frac{Atoms}{Coulomb}\right]$.

 $I = 50 \text{ mA} = 50.10^{-6} \text{ A}$ is the average beam current during the irradiation.

$$N_A = 6.022.10^{23} \frac{Atoms}{Gram.Atom}$$
 is the Avogadro's number.

V = 25 l is the volume of eutectic of the LiSoR experiment.

Moreover:

$$A_{a}(t) = PR(t) \times I \times V \times K_{a} \times N_{A}$$

$$(4.6)$$

Thus, with the formulas (4.5) and (4.6) we can calculate the time dependent α -activity after the end of the irradiation as a function of the initial production rates PR_0 :

$$A_a(t) = K_a \times I \times PR_0 \times \left(1 - e^{(-lt)}\right)$$
(4.7)

where $A_a(t)$ is the α -activity at the time t in [Bq].

To obtain the total activity, the following formula can be applied:

$$A_T = \frac{A_a}{K_a} \tag{4.8}$$

where A_T is the total activity in [Bq].

4.3.2.3. Comparison of formula (4.7) with results of ORIHET3

The production rate calculation was performed with the ORIHET3 program [13]. The sequence of the operations to obtain the output files *.dec and *.bup are shown in figure 5-3. As it is explained in [13] and [23], ORIHET3 solves the Bateman equations in order to calculate the time dependent concentrations of the nuclides. The differences between the results obtained with the theoretical formula (4.6) of the previous section with those of ORIHET3 are given in table 4-5. We can observe that the differences are very small.

	α-Activity [Becq]									
	1 month			3 months			6 months			
Nuclides	Theory Formula (4.7)	ORIHET3	Difference	Theory Formula (4.7)	ORIHET3	Difference	Theory Formula (4.7)	ORIHET3	Difference	
Po-203	6,95E+07	6,96E+07	0,14%	6,95E+07	6,96E+07	0,14%	6,95E+07	6,96E+07	0,14%	
Po-204	4,23E+09	4,22E+09	0,22%	4,23E+09	4,22E+09	0,22%	4,23E+09	4,22E+09	0,22%	
Po-205	3,81E+08	3,81E+08	0,03%	3,81E+08	3,81E+08	0,03%	3,81E+08	3,81E+08	0,03%	
Po-206	4,35E+10	4,37E+10	0,26%	4,78E+10	4,77E+10	0,24%	4,79E+10	4,77E+10	0,31%	
Po-207	1,68E+08	1,76E+08	4,96%	1,68E+08	1,76E+08	4,96%	1,68E+08	1,76E+08	4,96%	
Po-208	1,52E+10	1,52E+10	0,12%	4,47E+10	4,48E+10	0,23%	8,67E+10	8,66E+10	0,18%	
Po-209	4 30E+07	4 29E+07	0.16%	1.29E+08	1 29E+08	0.10%	2.58E+08	2.58E+08	0.02%	

Table 4-5: Alpha-activity of the polonium isotopes after continuous irradiation at 50 μA.

The following calculations include two parts. The first part treats the study of the production rates (see tables 4-6 and 4-7) and of the α -activity directly after the irradiation and the second part is related to the decay of isotopes after one, three and six months (see table 4-9).

		LAHET		FLUKA		MCNPX real geometry			MCNPX simpler geometry		
Nuclides	Half-lifes [seconds]	Production rate [atoms/Clb]	Production rate [gr atoms/s]	Production rate [atoms/Clb]	Production rate [gr atoms/s]	Production rate [atoms/Clb]	Production rate [gr atoms/s]	error	Production rate [atoms/Clb]	Production rate [gr atoms/s]	error
Po-203	2,088E+03	1,561E+15	1,296E-13	1,475E+15	1,225E-13	2,501E+15	2,077E-13	37,6%	1,263E+15	1,0487E-13	23,6%
Po-204	1,271E+04	1,330E+16	1,104E-12	1,203E+16	9,988E-13	1,504E+16	1,249E-12	11,6%	1,281E+16	1,0636E-12	3,8%
Po-205	6,480E+03	1,630E+16	1,353E-12	2,175E+16	1,806E-12	1,886E+16	1,566E-12	13,6%	1,905E+16	1,5817E-12	14,4%
Po-206	7,603E+05	1,146E+16	9,515E-13	1,682E+16	1,397E-12	1,783E+16	1,480E-12	35,7%	1,757E+16	1,4588E-12	34,8%
Po-207	2,010E+03	9,768E+15	8,110E-13	1,342E+16	1,114E-12	1,958E+16	1,626E-12	50,1%	1,678E+16	1,3932E-12	41,8%
Po-208	9,139E+07	8,628E+15	7,164E-13	1,458E+16	1,211E-12	1,608E+16	1,335E-12	46,3%	1,535E+16	1,2745E-12	43,8%
Po-209	3,217E+09	1,692E+15	1,405E-13	2,925E+15	2,429E-13	1,488E+15	1,235E-13	13,7%	1,522E+15	1,2637E-13	11,2%

4.3.2.4. Polonium production rates and induced activity

Table 4-6: Production rates of Polonium isotopes just after irradiation and cooling time of zero.

			LAHET	FLUKA MCNPX real geometry		MCNPX simpler geometry		
Nuclides	Decay constant λ	Branching ratio percent α-decays	Induced α-Activity [Becq/Clb]	Induced α-Activity [Becq/Clb]	Induced α-Activity [Becq/Clb]	error	Induced α-Activity [Becq/Clb]	error
Po-203	3,320E-04	0,11%	5,700E+08	5,386E+08	9,133E+08	37,6%	4,612E+08	23,6%
Po-204	5,454E-05	0,66%	4,787E+09	4,330E+09	5,413E+09	11,6%	4,611E+09	3,8%
Po-205	1,070E-04	0,04%	6,974E+08	9,306E+08	8,070E+08	13,6%	8,151E+08	14,4%
Po-206	9,117E-07	5,45%	5,694E+08	8,357E+08	8,859E+08	35,7%	8,730E+08	34,8%
Po-207	3,448E-04	0,02%	6,737E+08	9,256E+08	1,350E+09	50,1%	1,157E+09	41,8%
Po-208	7,584E-09	100,00%	6,544E+07	1,106E+08	1,220E+08	46,3%	1,164E+08	43,8%
Po-209	2,155E-10	99,52%	3,628E+05	6,272E+05	3,191E+05	13,7%	3,264E+05	11,2%

Table 4-7: Alpha activities of Polonium isotopes just after irradiation and cooling time of zero.
The branching ratios are not the same in the references [53] and [54] (see table 4-8). The branching ratios from [53] are taken from [56] and we will use this data for our calculations.

Branching ratio percent α-decays									
Taken from [53]	Taken from [54]								
0,02%	0,11%								
0,60%	0,66%								
0,07%	0,04%								
5,00%	5,45%								
0,00%	0,02%								
99,97%	100,00%								
99,98%	99,52%								

Table 4-8: Branching ratio for the α -decays in percent used in references [53] and [54].

4.3.2.5. Build-up of Polonium concentration and activity

The evolution in time of the concentrations in $\left[\frac{Gram.Atom}{liter}\right]$ of the Polonium isotopes was

obtained assuming a continuous proton beam of 50 mA, and applying the formula (4.5).

The table 4-9 shows us the concentration of the different Polonium isotopes calculated with LAHET, FLUKA and MCNPX at three different times: after one, three and six months. The differences are caculated compared with the LAHET values. We show here only the results obtained for the simplified geometry because the calculations from [51] were performed with the simplified geometry and the differences are small. However, the data for the real geometry are supplied in annex D. We can observe that this difference can be up to 43.8% for the Polonium 208 and to 41.8% for the Polonium 207. But for the other isotopes, the difference is acceptable. One can notice that the differences are smaller with the simplified geometry than with the real geometry. It is in agreement with the calculation conditions of the LAHET values. We can observe that the two isotopes ²⁰⁸Po and ²⁰⁹Po have more important activities than the other Polonium isotopes. It is due to the longer half-lifes of the ²⁰⁸Po and ²⁰⁹Po.

	L	AHET-1 month	F	LUKA-1 month	MCNH	X (Simplified geometry)-1 n	nonth
Nuclides	α-Activity [Becq]	Production rate [gr.atoms/liter eutectic]	α-Activity [Becq]	Production rate [gr.atoms/liter eutectic]	α-Activity [Becq]	Production rate [gr.atoms/liter eutectic]	Difference
Po-203	8,586E+07	1,562E-11	8,113E+07	1,476E-11	6,947E+07	1,264E-11	23,6%
Po-204	4,389E+09	8,100E-10	3,970E+09	7,326E-10	4,227E+09	7,801E-10	3,8%
Po-205	3,260E+08	5,061E-10	4,350E+08	6,753E-10	3,810E+08	5,915E-10	14,4%
Po-206	2,840E+10	3,797E-08	4,169E+10	5,573E-08	4,355E+10	5,821E-08	34,8%
Po-207	9,768E+07	9,407E-11	1,342E+08	1,292E-10	1,678E+08	1,616E-10	41,8%
Po-208	8,537E+09	7,476E-08	1,443E+10	1,263E-07	1,519E+10	1,330E-07	43,8%
Po-209	4,779E+07	1,480E-08	8,262E+07	2,559E-08	4,299E+07	1,332E-08	11,2%

	L	AHET-3 months	FI	LUKA-3 months	MCNP	X (Simplified geometry)-3 m	onths
Nuclides	α-Activity [Becq]	Production rate [gr.atoms/liter eutectic]	α-Activity [Becq]	Production rate [gr.atoms/liter eutectic]	α-Activity [Becq]	Production rate [gr.atoms/liter eutectic]	Difference
Po-203	8,586E+07	1,562E-11	8,113E+07	1,476E-11	6,947E+07	1,264E-11	23,6%
Po-204	4,389E+09	8,100E-10	3,970E+09	7,326E-10	4,227E+09	7,801E-10	3,8%
Po-205	3,260E+08	5,061E-10	4,350E+08	6,753E-10	3,810E+08	5,915E-10	14,4%
Po-206	3,121E+10	4,172E-08	4,580E+10	6,123E-08	4,784E+10	6,396E-08	34,8%
Po-207	9,768E+07	9,407E-11	1,342E+08	1,292E-10	1,678E+08	1,616E-10	41,8%
Po-208	2,511E+10	2,199E-07	4,243E+10	3,716E-07	4,467E+10	3,912E-07	43,8%
Po-209	1,433E+08	4,439E-08	2,477E+08	7,673E-08	1,289E+08	3,993E-08	11,2%

	L	AHET-6 months	FI	LUKA-6 months	MCNP	X (Simplified geometry)-6 m	onths
Nuclides	α-Activity [Becq]	Production rate [gr.atoms/liter eutectic]	α-Activity [Becq]	Production rate [gr.atoms/liter eutectic]	α-Activity [Becq]	Production rate [gr.atoms/liter eutectic]	Difference
Po-203	8,586E+07	1,562E-11	8,113E+07	1,476E-11	6,947E+07	1,264E-11	23,6%
Po-204	4,389E+09	8,100E-10	3,970E+09	7,326E-10	4,227E+09	7,801E-10	3,8%
Po-205	3,260E+08	5,061E-10	4,350E+08	6,753E-10	3,810E+08	5,915E-10	14,4%
Po-206	3,123E+10	4,175E-08	4,583E+10	6,127E-08	4,788E+10	6,401E-08	34,8%
Po-207	9,768E+07	9,407E-11	1,342E+08	1,292E-10	1,678E+08	1,616E-10	41,8%
Po-208	4,875E+10	4,270E-07	8,238E+10	7,215E-07	8,673E+10	7,596E-07	43,8%
Po-209	2,863E+08	8,870E-08	4,950E+08	1,533E-07	2,576E+08	7,979E-08	11,2%

Table 4-9: Concentrations and alpha-activities of Polonium isotopes after continuous irradiation.

4.4. Calculations related to the LiSoR experimental results

			Total ac	tivity [Bq]		
Nuclides	LAHET	FLUKA Simplier geometry	FLUKA real geometry	MCNPX Simpler geometry	MCNPX real geometry	Experiment PSI
Po-203	7,805E+10	7,375E+10	2,30E+11	6,315E+10	1,251E+11	
Po-204	6,642E+11	6,007E+11	9,90E+11	6,397E+11	7,511E+11	
Po-205	8,150E+11	1,087E+12	1,10E+12	9,525E+11	9,430E+11	
Po-206	6,050E+10	8,880E+10	9,10E+10	9,276E+10	9,413E+10	1,87E+11
Po-207	4,884E+11	6,710E+11	7,90E+11	8,390E+11	9,790E+11	
Po-208	4,003E+08	6,764E+08	5,90E+08	7,122E+08	7,460E+08	9,02E+08
Po-209	2,231E+06	3,857E+06		2,007E+06	1,962E+06	
Po-206/Po-208	1.511E+02	1 313E+02	1 54E+02	1 302E+02	1 262E+02	2.07E+02

The experimental data [57] are measured in the spallation neutron facility SINQ at PSI [58, 59].

Table 4-10: Total activity of the Polonium isotopes for several simulations codes and for theexperiment.

Figure 4-5: Comparison of the total activity of the Polonium isotopes directly after 34 hours irradiation.

..... -----. 200 Residual nuclei production in the LiSoR target 150 72 MeV protons on ²⁰⁸ Pb Mass number A 10050 INCL4+ABLA ISABEL 0 1e-03 1e-02 le-04 le-05 1e-06 1e-01 Residual nuclei production per source proton

Figure 4-6: Residual nuclei production in the LiSoR as a function of the mass number A.

Figure 4-7: *Time dependence of the alpha-activity for the polonium isotopes. Alpha-activity in Curies [Ci] as a function of the time.*

The data of table 4-10 are shown in figure 4-5. It represents the total activity of the Polonium isotopes after 34 hours irradiation according to the conditions of the LiSoR experiment. One can observe a relativ good agreement between the different simulation codes and with the experimental data. The simulationed results underestimate the experimental data up to 42% for the ²⁰⁹ Po, 18% for the ²⁰⁸Po and 50% for the ²⁰⁶Po. But there are very few experimental data in order to obtain conclusive results.

The figure 4-6 shows the total residual nuclei production per source proton as a function of the mass number for the real geometry of the LiSoR test tube. One can observe that the spallation part of the curve increase to a very high point in comparison of the fission part. This difference is explained by the very low energy proton beam (72 MeV).

Figure 4-7 shows the decay of the Polonium isotopes after 34 hours irradiation at 50 mA. One can observe that the isotopes 202, 203, 204, 205, 206 and 207 are disappeared after a few days. The two isotopes 208 and 209 have a longer half-life and that's why their decay is very long.

Chapter 5. Comparison KAPROS/ORIHET3

5.1. KAPROS

5.1.1. Theory

The burn-up equations are described in [11] and are solved with the program BURNUP [12].

With the burn-up code one investigates the time dependent change of the atomic density of a nuclide N. Changes result from the depletion and the production.

The production of a nuclide may occur through the following ways:

- Decay other nuclides.
- Neutron capture (to which here also (n, 2n) and (n, 3n) reaction is counted) of other nuclides.
- Creation of fission products by fission.

The reduction of the isotope number density of a nuclide can take place via the following reactions:

- Decay of this nuclides.
- Neutron capture (to which here also (n, 2n) and (n, 3n) reactions are counted) of this nuclide.
- Fission.

The time dependence of the nuclide density described by the balance of production and loss rates for each individual nuclide is shown in the following formula:

$$\frac{dN_{i}}{dt} = \sum_{j=1}^{M} l_{i,j} l_{j} N_{j} + \overline{\Phi} \sum_{k=1}^{M} f_{i,k} \boldsymbol{s}_{k} N_{k} - \left(l_{i} + \overline{\Phi} \boldsymbol{s}_{i} \right) N_{i}$$
(5.1)

where

- N_i Atom density of the isotope I, unit: [particles/cm³].
- λ_i Disintegration constant of the isotope I, unit: [1/s].
- σ_i Spectrum-weighted one-group absorption cross sections of the isotope I, unit:[10⁻²⁴cm²]=[barn].
- $l_{i,j}$ Fraction of the decay of the isotope j, leading to I, unit: nondimensional $0 < l_{i,j} < 1$.
- $f_{i,k}$ Fraction of the absorption of the isotope k, leading to I, unit: nondimensional $0 < f_{i,j} < 1$.
- $\overline{\Phi}$ Mean (spatial, energy and time averaged) absolute neutron flux density, unit: [neutrons/cm²*s].
- *M* Number of treated isotopes.

The above equation applies to each nuclide i=1,...M. Moreover, the mean absolute neutron flux density $\overline{\Phi}$ is supposed to be constant on an considered interval of time. That's why the equation can be treated as homogeneous differential equation system. One can write the M coupled differential equations as:

$$\left[\frac{dN}{dt}\right] = \left[A\right]\left[N\right] \tag{5.3}$$

where $\left[\frac{dN}{dt}\right]$: Vector (length M) of nuclide density.

[*A*]: (M, M)-Matrix containing the decay and production coefficient.

The program treats the following radioactive processes of decomposition:

- Emission of a positron, in which case the produced nuclide remains in the basic state and/or in with isomers a state.
- Transition isomers from the state in the basic state.
- Emission of a alpha particle, α -decay.
- Emission of negatrons, in which case the produced nuclide remains in the basic state and/or in with isomers a state, β-decay.
- Emission of delayed neutrons (only for fission products).
- Spontaneous fission (only for actinides).

The program treats the following neutron reactions:

- (n, α) reaction (light elements, actinides, fission products).
- (n, p) reaction (light elements, actinides, fission products).
- (n, γ) reaction to the initial state and to isomer state.(light elements, actinides, fission products).
- (n, 2n) reaktion to the initial state and to isomers state.(light elements, actinides).
- (n, 3n) reaktion (actinides).
- Fission (actinides).

At the time of the decomposition of actinides, the formation of the fission products is treated only for one limited number (currently the maximum is 5) of actinides in the program. It depends also on the considered reactor type (NLIBE=1,2,3,4).

The library is a reformatted KORIGEN [60] library.

The BURNUP modul is developed from the Oak Ridge Code ORIGEN [61]. That's why the method for the numerical solution is the same.

The transition matrix is built from the data of three specific libraries. The first contains the data for decay and activation for light elements, the second data for actinides and the third data for fission products

5.1.2. Flowchart for KAPROS burn up calculations

Figure 5-1: Sequence of the programs for the use of KAPROS for time dependence calculations.

Figure 5-2: Flowchart of the different KAPROS programs related to the figure 5-1.

Figure 5-1 describes the sequence of the involved modules in KAPROS and explains the main principles of its operation. Figure 5-2 show the flowchart of the different programs called in the KAPROS burn up calculations.

The dotted line on figure 5-1 delimits the MCNPX job, above and the KAPROS job, below.

The metal file contains 69 groups flux.

The MISCH block from HETMIX includes the density of particles

The MCFLX0 module extracts the flux stored on the mctal file.

GRUCAL calculates the cross sections for 69 energy groups. The results are stored in SIGMN block.

The task of COLLUP is to condense the 69 groups of cross section in only one group. It uses the formula:

$$\sum_{1 \text{group}} = \frac{\int_{i} \Phi_{i} \sum_{i}}{\int_{i} \Phi_{i}}$$
(5.4)

We obtain a new SIGMN block with one group cross section. It may contain up to 800 isotopes. The particularity of the KAPROS is the possibility to make a loop with the MISCH block obtained with BURNUP.

The BURNUP module allows solving the burn-up equations. The grouping of the programs GRUCAL, COLLUP and BURNUP is performed in the KAPROS procedure BURN0D. The table 5-1 presents an input (input batablocks) file for a KAPROS job. One can distinguish different parts of the input file which begin with the command line is "*KSIOX DBN=*datablock*". Datablock is used in corresponding modules.

The application of these code systems was prepared more detailed for investigations of the LiSoR problem. However, because of unexpected problems with the analysis of the normalization of the results of the MCNPX calculation as described in chapter 3, it was decided to perform these investigations in a later stage of investigations.

5.1.3. The input file

// Jobkarte (REGION=1024K) // EXEC KSG //K.FT20F001 DD DISP=SHR,DSN=INR415.KORFI(NDLITE) //K.FT21F001 DD DISP=SHR.DSN=INR415.KORFI(NDACT) //K.FT22F001 DD DISP=SHR,DSN=INR415.KORFI(NDFPS) //K.FT03F001 DD SYSOUT=A,DCB=*FT06F001 //K.SYSINDD* *KSIOX DBN=GRUCAL, TYP=CARD, PMN=PRGRUC 'GRUCAL ' KFKINR ' ' 1.1 'MISCH ' 'NOTGRMAT' 'DATBLOCK' 'AUSWERT' 'ZUSATZ ' 2 'SFISS '' '10 'SCAPT '' '10 ' 1 0 'GRUCEND ' *\$*\$ *KSIOX DBN=INPUT DIXCON,TYP=CARD,PMN=PDXCON 'CNTR' 'PRGR' 'GRST' 1 'GRNR' 1 *\$*\$ *KSIOX DBN=INPUT BURNUP,IND=1,TYP=CARD,PMN=PBURNI 'NUDA' 'REAC' 3 1.0 0.0 0.0 'BUTB' 2 'FE ' 'O 16 ' 'FPWS' 3 'XE ' 0.0 'KR ' 0.0 'SR ' 0.4 *\$*\$ *KSIOX DBN=FLUXIN,TYP=CARD,PMN=PBURNF,IND=1 1 1 100.0 2.03.05.1E+15 *\$*\$ *KSIOX DBN=MISCH_TYP=CARD,PMN=PDXCON,IND=1 7' 'U 235 ' PU239 ' *\$ MIXTURE 1 "U 235 ' 1500.0 5.0000E-05 U 238 ' 1500.0 7.0000E-03 PU239 ' 1500.0 1.5000E-03 FE ' 1500.0 1.5000E-02 'SI ' 1500.0 1.5000E-02 'O 16 ' 1500.0 1.5000E-02 'SPP 9 ' 1500.0 1.0000E-11 *\$*\$ *KSIOX DBN=INPUT RENAME,IND=1,TYP=CARD,PMN=PRREN 'SIGMNO '1'SIGMN1 10 *\$*\$ *GO SM=DIXCON *GO SM=RENDB,MPARM=1 *GO SM=BURNUP,MPARM=1

Table 5-1: Input file for a KAPROS job.

5.2. ORIHET3

5.2.1. Utilization of the program

Figure 5-3: Sequence of the programs to the use of ORIHET3 for time dependence calculations.

5.2.2. The input file for ORIHET3

%time_step 1, 4, 8, 12, 16, 20, 24, 28, 32, 34, unit=h;	Calculation of the activity build up during the irradiation at different
%title SINQ Target activity build up [with fission];	time step indicated in hours.
%basis In total target mass for 0.05 mA;	
%nuclide_library nubasex ;	Use of the NUBASEX nuclides library
%output none grammes/thresh=1.0e-13 activity/nucl /thresh=1.0e-13;	The program doesn't take into account the activity under the indicated threshold
%output unit = ci neutr/nucl alpha/nucl;	Output: Activity in Curies [Ci]
%conc zero;	
%prod file="nucdat.dat";	Input file named nucdat.dat
%calculate logfile = x.bup ;	Output file named x.bup
%time_step 10. 20. 40. 100. 200. 400. 800. 1200. 2400. 4800. unit=h;	Calculation of the decay of the residual nuclei after 34 hours irradiation
%output check=1 ;	at different time step indicated in hours.
%title SINQ Target activity decay following 34 hours irradiation;	
%prod zero;	
%concen time_step=10 ;	
%calculate logfile = y.dec ;	Output file named y.dec
%end ;	

 Table 5-2: Input file for an ORIHET3 job and meaning of somes terms.

Conclusion

Within the Beta-Testing of MCNPX, investigations to study the Accelerator Driven Systems are performed at the Institut for Reactor Safety (IRS).

The first chapters were dedicated to the description of the spallation reaction, to give the charasteristics necessary for a good understanding of the results of this reaction and to the presentation of the models which had been used in this work.

The main work of this study was the validation of the implementation of the INCL4+ABLA code in the new beta version 2.5e of MCNPX after the code of the Cugnon group was integrated in MCNPX. First the normalized MCNPX results were compared with the corresponding results obtained with Cugnon Stand-alone and they were in very good agreement for the fission part and for the spallation part too. Particularly, this study shows how to define the input parameters and the corresponding normalization to obtain the spallation yields. An important part was devoted to the detailed understanding of the calculations of the geometrical cross section. The MCNPX results were compared with the experimental data at different energy level. At 1 GeV proton energy, MCNPX results with recommended input parameters were in good agreement with the data from the GSI (Darmstadt) and the data from ISTC (Moscow). A dispersion of the raw data from ISTC was found at 600 MeV proton energy. The data from GSI for 500 MeV were in very good agreement for the spallation part, but a difference of 40% was observed for the fission part which would be disappear after the discussed correction of the experimental data.

After the validation of MCNPX, we investigated to the LiSoR experiment. This experiment has the role to prepare the MEGAPIE project by simulating the MEGAPIE conditions (under irradiation, under strain and in the presence of Lead-Bismuth-Eutectic). We focused this study on predictions for the Polonium generation. Indeed, the Polonium is an important problem of MEGAPIE because it may cause contamination of the target. The main isotopes ²⁰⁸Po and ²⁰⁹Po were particularly considered due to their α -activity. An interesting question is to study the ²¹⁰Po which is produced by activation and the program ORIHET3 used for the decay calculations doesn't take into account activation.

The last chapter of this work presented two codes for depletion calculation: ORIHET3 developed at PSI and KAPROS developed at FZK. Their characteristics and their uses were explained. The next step is the comparison of calculations to evaluate the two codes and especially to study the ²¹⁰Po generation by activation.

Annex A Distribution of spallation yields before normalization calculated by MCNPX and obtained by HTAPE3X and with the tally 8 option

These results are performed with the INCL4+ABLA model for 300.000 cascades histories by irradiation of a ²⁰⁸Pb target by 1 GeV proton beam. The LCA input card is the one defined in section 3.1.

The first table is the result from HTAPE3X. This is the direct output file opt8a except the column with the mass number A. Indeed, it is easier to have the same value in order to compare with the output file obtained with tally 8.

The data are given only for the spallation corresponding to charge munber ranging between 65 and 85.

Ζ	Ν	Α	Yields	Error	Ζ	Ν	Α	Yields	Error		Ζ	Ν	Α	Yields	Error
65	80	145	3,33E-06	1	72	95	167	1,07E-04	0,1768	1	75	100	175	1,24E-03	0,0518
65	84	149	3,33E-06	1	72	96	168	1,70E-04	0,14		75	101	176	1,32E-03	0,0503
65	85	150	6,67E-06	0,7071	72	97	169	2,03E-04	0,128		75	102	177	1,32E-03	0,0502
65	88	153	6,67E-06	0,7071	72	98	170	1,97E-04	0,1302		75	103	178	1,39E-03	0,0489
65	89	154	3,33E-06	1	72	99	171	1,43E-04	0,1525		75	104	179	1,20E-03	0,0527
65	90	155	3,33E-06	1	72	100	172	1,17E-04	0,169		75	105	180	8,63E-04	0,0621
66	85	151	3,33E-06	1	72	101	173	9,33E-05	0,189		75	106	181	6,60E-04	0,071
67	86	153	3,33E-06	1	72	102	174	6,67E-05	0,2236		75	107	182	4,87E-04	0,0827
68	89	157	3,33E-06	1	72	103	175	3,00E-05	0,3333		75	108	183	3,60E-04	0,0962
68	90	158	6,67E-06	0,7071	72	104	176	1,33E-05	0,5		75	109	184	1,90E-04	0,1324
68	91	159	3,33E-06	1	72	105	177	6,67E-06	0,7071		75	110	185	1,03E-04	0,1796
68	92	160	6,67E-06	0,7071	72	106	178	6,67E-06	0,7071		75	111	186	6,00E-05	0,2357
68	95	163	6,67E-06	0,7071	73	92	165	1,33E-05	0,5		75	112	187	4,67E-05	0,2673
68	96	164	3,33E-06	1	73	93	166	2,67E-05	0,3535		75	113	188	1,33E-05	0,5
68	99	167	3,33E-06	1	73	94	167	5,67E-05	0,2425		75	114	189	1,67E-05	0,4472
69	88	157	3,33E-06	1	73	95	168	1,87E-04	0,1336		75	115	190	1,00E-05	0,5773
69	90	159	1,33E-05	0,5	73	96	169	1,83E-04	0,1348		75	116	191	3,33E-06	1
69	92	161	6,67E-06	0,7071	73	97	170	3,47E-04	0,098		75	118	193	3,33E-06	1
69	93	162	1,67E-05	0,4472	73	98	171	3,30E-04	0,1005		76	93	169	6,67E-06	0,7071
69	94	163	1,00E-05	0,5773	73	99	172	3,47E-04	0,098		76	94	170	6,67E-06	0,7071
69	95	164	3,33E-06	1	73	100	173	2,87E-04	0,1078		76	95	171	2,33E-05	0,378
69	96	165	3,33E-06	1	73	101	174	3,13E-04	0,1031		76	96	172	9,00E-05	0,1924
69	97	166	3,33E-06	1	73	102	175	2,03E-04	0,128		76	97	173	2,53E-04	0,1147
69	98	167	6,67E-06	0,7071	73	103	176	1,60E-04	0,1443		76	98	174	3,57E-04	0,0967
69	100	169	6,67E-06	0,7071	73	104	177	1,00E-04	0,1826		76	99	175	7,93E-04	0,0648
70	89	159	3,33E-06	1	73	105	178	8,67E-05	0,1961		76	100	176	1,25E-03	0,0515
70	90	160	3,33E-06	1	73	106	179	3,33E-05	0,3162		76	101	177	1,79E-03	0,0432
70	91	161	2,33E-05	0,378	73	107	180	1,67E-05	0,4472		76	102	178	2,28E-03	0,0382
70	92	162	1,00E-05	0,5773	73	108	181	1,67E-05	0,4472		76	103	179	2,28E-03	0,0382
70	93	163	3,00E-05	0,3333	73	109	182	1,00E-05	0,5773		76	104	180	2,32E-03	0,0379
70	94	164	1,33E-05	0,5	73	110	183	6,67E-06	0,7071		76	105	181	2,14E-03	0,0395
70	95	165	1,67E-05	0,4472	73	114	187	3,33E-06	1		76	106	182	1,93E-03	0,0415
70	96	166	2,33E-05	0,378	74	92	166	1,33E-05	0,5		76	107	183	1,47E-03	0,0476
70	97	167	2,00E-05	0,4082	74	93	167	3,33E-06	1		76	108	184	1,15E-03	0,0539
70	98	168	1,00E-05	0,5773	74	94	168	3,33E-05	0,3162		76	109	185	7,93E-04	0,0648
70	99	169	3,33E-06	1	74	95	169	1,20E-04	0,1667		76	110	186	5,63E-04	0,0769
70	100	170	3,33E-06	1	74	96	170	2,5/E-04	0,1139		76	111	18/	3,4/E-04	0,098
70	101	1/1	3,33E-06	1	74	97	1/1	4,00E-04	0,0913		76	112	188	2,13E-04	0,125
70	103	173	3,33E-06	1	74	98	172	5,53E-04	0,0776		76	113	189	1,3/E-04	0,1562
70	107	1//	3,33E-00	1	74	99 100	173	0,57E-04	0,0712		70	114	190	0,00E-05	0,2357
71	00	159	3,33E-00	1	74	100	174	7,47E-04	0,0008		76	115	191	4,55E-05	0,2775
71	90	162	5,55E-00	1	74	101	175	7,30E-04	0,0000		70	117	192	2,00E-05	0,4082
71	91	162	0,07E-00 2,00E-05	0,7071	74	102	170	0,17E-04	0,0755		76	117	195	1,00E-05	0,3773
71	03	164	2,00L-05	0,4082	74	103	178	4,00E-04	0,0033		76	110	105	6.67E-06	0,5
71	94	165	3.67E-05	0.3015	74 74	105	179	2.73E-04	0.1104		76	120	196	3.33E-06	1
71	95	166	5,07E-05	0,2236	74	105	180	2,73E-04	0.1348		70	96	173	1.33E-05	0.5
71	96	167	0,07E-05	0,2230	74	107	181	1,05E-04	0,1540		77	97	174	7.67E-05	0,0
71	97	168	7,00E-05	0,2132	74	108	182	7.00E-05	0,1700		77	98	175	2 00E-04	0.1291
71	98	169	4.67E-05	0.2673	74	109	183	3.00E-05	0.3333		77	99	176	4.33E-04	0.0877
71	99	170	4.33E-05	0.2773	74	110	184	3.33E-05	0.3162		77	100	177	9.67E-04	0.0587
71	100	171	2,67E-05	0,3535	74	111	185	1,00E-05	0,5773		77	101	178	1,57E-03	0.046
71	101	172	1,33E-05	0.5	74	112	186	1,00E-05	0,5773		77	102	179	2,23E-03	0,0386
71	102	173	3,33E-06	1	75	92	167	3,33E-06	1		77	103	180	3,04E-03	0,0331
71	103	174	6,67E-06	0,7071	75	93	168	3,33E-06	1		77	104	181	3,53E-03	0,0307
71	104	175	1,33E-05	0.5	75	94	169	1,67E-05	0,4472		77	105	182	3,77E-03	0,0297
71	106	177	6,67E-06	0,7071	75	95	170	9,33E-05	0,189		77	106	183	3,71E-03	0,0299
72	91	163	1,67E-05	0,4472	75	96	171	2,00E-04	0,1291		77	107	184	3,47E-03	0,0309
72	92	164	1,67E-05	0,4472	75	97	172	3,40E-04	0,099		77	108	185	2,91E-03	0,0338
72	93	165	6,00E-05	0,2357	75	98	173	5,67E-04	0,0767		77	109	186	2,20E-03	0,0389
72	94	166	6,33E-05	0,2294	75	99	174	8,77E-04	0,0616		77	110	187	1,73E-03	0,0439
L					L					1					

Ζ	Ν	Α	Yields	Error	Ζ	Ν	Α	Yields	Error	Ζ	Ν	Α	Yields	Error
77	111	188	1,22E-03	0,0522	79	113	192	5,68E-03	0,0242	81	119	200	1,07E-02	0,0175
77	112	189	9,43E-04	0,0594	79	114	193	4,94E-03	0,0259	81	120	201	1,06E-02	0,0176
77	113	190	6,60E-04	0,071	79	115	194	4,04E-03	0,0287	81	121	202	1,01E-02	0,0181
77	114	191	3,80E-04	0,0936	79	116	195	3,18E-03	0,0323	81	122	203	9,84E-03	0,0183
77	115	192	3,03E-04	0,1048	79	117	196	2,65E-03	0,0354	81	123	204	9,91E-03	0,0183
77	116	193	1,47E-04	0,1507	79	118	197	1,90E-03	0,0418	81	124	205	1,04E-02	0,0178
77	117	194	9,33E-05	0,189	79	119	198	1,60E-03	0,0457	81	125	206	1,11E-02	0,0173
77	118	195	9,00E-05	0,1924	79	120	199	1,25E-03	0,0517	81	126	207	2,05E-02	0,0126
77	119	196	6,00E-05	0,2357	79	121	200	9,50E-04	0,0592	81	127	208	1,93E-04	0,1313
77	120	197	3,33E-05	0,3162	79	122	201	7,70E-04	0,0658	82	104	186	3,33E-06	1
77	121	198	2,00E-05	0,4082	79	123	202	5,17E-04	0,0803	82	105	187	4,33E-05	0,2773
77	122	199	1,67E-05	0,4472	79	124	203	3,63E-04	0,0958	82	106	188	1,57E-04	0,1459
77	123	200	6,67E-06	0,7071	79	125	204	2,03E-04	0,128	82	107	189	3,13E-04	0,1031
77	124	201	3,33E-06	1	79	126	205	9,33E-05	0,189	82	108	190	8,40E-04	0,063
77	125	202	6,67E-06	0,7071	79	127	206	1,33E-05	0,5	82	109	191	1,43E-03	0,0482
77	126	203	3,33E-06	1	80	100	180	1,00E-05	0,5773	82	110	192	2,56E-03	0,036
78	96	174	3,33E-06	1	80	101	181	7,00E-05	0,2182	82	111	193	3,60E-03	0,0304
78	97	175	3,33E-06	1	80	102	182	2,20E-04	0,1231	82	112	194	4,85E-03	0,0262
78	98	176	5,33E-05	0,25	80	103	183	4,60E-04	0,0851	82	113	195	5,85E-03	0,0238
78	99	177	1,67E-04	0,1414	80	104	184	1,00E-03	0,0577	82	114	196	7,20E-03	0,0214
78	100	178	4,83E-04	0,083	80	105	185	2,08E-03	0,04	82	115	197	8,11E-03	0,0202
78	101	179	9,37E-04	0,0596	80	106	186	3,36E-03	0,0315	82	116	198	8,68E-03	0,0195
78	102	180	1,76E-03	0,0435	80	107	187	5,02E-03	0,0257	82	117	199	9,42E-03	0,0187
78	103	181	2,91E-03	0,0338	80	108	188	6,56E-03	0,0225	82	118	200	1,00E-02	0,0182
78	104	182	3,91E-03	0,0291	80	109	189	7,47E-03	0,021	82	119	201	1,07E-02	0,0176
78	105	183	4,83E-03	0,0262	80	110	190	8,89E-03	0,0193	82	120	202	1,10E-02	0,0173
78	106	184	5,42E-03	0,0247	80	111	191	9,47E-03	0,0187	82	121	203	1,22E-02	0,0164
78	107	185	5,75E-03	0,024	80	112	192	9,77E-03	0,0184	82	122	204	1,29E-02	0,016
78	108	186	5,49E-03	0,0246	80	113	193	9,43E-03	0,0187	82	123	205	1,55E-02	0,0146
78	109	187	5,27E-03	0,0251	80	114	194	9,48E-03	0,0187	82	124	206	2,03E-02	0,0127
/8	110	188	4,34E-03	0,0277	80	115	195	8,38E-03	0,0199	82	125	207	3,72E-02	0,0093
/8 79	111	189	3,80E-03	0,0296	80	110	196	7,88E-03	0,0205	82	126	208	4,/5E-03	0,0264
78 70	112	190	3,13E-03	0,0320	80	11/	197	7,11E-05	0,0210	83 92	107	190	5,55E-00	1
70 70	115	191	2,23E-03	0,0384	80	110	198	5,90E-05	0,0257	03 92	100	191	3,00E-03	0,2382
78	114	192	1,00E-03	0,043	80	120	200	5,20E-05	0,0251	83	1109	192	1,17E-04	0,109
78	115	193	1,52E-05	0,0505	80	120	200	4,04E-03	0,0207	83	111	193	5,17E-04	0,1020
78	117	195	6.80F-04	0,0377	80	121	201	3,75E-03	0.0324	83	112	195	8,00F-04	0,0745
78	118	196	4 27E-04	0.0884	80	122	202	2 90E-03	0.0338	83	112	196	1,23E-03	0.0521
78	119	197	3.43E-04	0.0985	80	123	203	2,26E-03	0.0384	83	114	197	1,23E-03	0.0466
78	120	198	2.90E-04	0.1072	80	125	205	1.81E-03	0.0429	83	115	198	1.82E-03	0.0427
78	121	199	1,87E-04	0,1336	80	126	206	9,37E-04	0,0596	83	116	199	2,21E-03	0,0388
78	122	200	1,43E-04	0,1525	80	127	207	5,67E-05	0,2425	83	117	200	2,23E-03	0,0386
78	123	201	8,33E-05	0,2	81	101	182	3,33E-06	1	83	118	201	2,63E-03	0,0355
78	124	202	4,00E-05	0,2887	81	102	183	1,33E-05	0,5	83	119	202	2,55E-03	0,0361
78	125	203	6,67E-06	0,7071	81	103	184	9,00E-05	0,1924	83	120	203	2,74E-03	0,0348
78	126	204	1,00E-05	0,5773	81	104	185	1,63E-04	0,1428	83	121	204	2,97E-03	0,0334
79	99	178	3,00E-05	0,3333	81	105	186	5,33E-04	0,079	83	122	205	2,91E-03	0,0338
79	100	179	1,37E-04	0,1562	81	106	187	1,28E-03	0,051	83	123	206	3,01E-03	0,0332
79	101	180	3,30E-04	0,1005	81	107	188	2,21E-03	0,0388	83	124	207	2,29E-03	0,0381
79	102	181	7,23E-04	0,0679	81	108	189	3,24E-03	0,032	83	125	208	1,49E-03	0,0472
79	103	182	1,57E-03	0,0461	81	109	190	4,94E-03	0,0259	84	110	194	6,67E-06	0,7071
79	104	183	2,68E-03	0,0352	81	110	191	6,63E-03	0,0224	84	111	195	1,67E-05	0,4472
79	105	184	3,88E-03	0,0293	81	111	192	7,85E-03	0,0205	84	112	196	2,00E-05	0,4082
79	106	185	5,17E-03	0,0253	81	112	193	9,43E-03	0,0187	84	113	197	1,67E-05	0,4472
79	107	186	6,33E-03	0,0229	81	113	194	9,92E-03	0,0182	84	114	198	7,00E-05	0,2182
79	108	187	7,32E-03	0,0213	81	114	195	1,12E-02	0,0172	84	115	199	3,67E-05	0,3015
79	109	188	7,86E-03	0,0205	81	115	196	1,14E-02	0,017	84	116	200	8,67E-05	0,1961
79	110	189	7,79E-03	0,0206	81	116	197	1,13E-02	0,0171	84	117	201	1,07E-04	0,1768
79	111	190	7,23E-03	0,0214	81	117	198	1,14E-02	0,017	84	118	202	1,53E-04	0,1474
79	112	191	6,49E-03	0,0226	81	118	199	1,13E-02	0,0171	84	119	203	9,00E-05	0,1924

Ζ	Ν	А	Yields	Error
84	120	204	9,00E-05	0,1924
84	121	205	7,00E-05	0,2182
84	122	206	6,00E-05	0,2357
84	123	207	3,00E-05	0,3333
84	124	208	3,33E-06	1
85	120	205	3,33E-06	1

Z/A	Yields	Error		Z/A	Yields	Error		Z/A	Yields	Error	Z/A	Yields	Error
65144	0,00E+00	0		67155	0,00E+00	0		69162	1,67E-05	0,4472	71163	2,00E-05	0,4082
65145	3,33E-06	1		67156	0,00E+00	0		69163	1,00E-05	0,5773	71164	4,33E-05	0,2773
65146	0,00E+00	0		67157	0,00E+00	0		69164	3,33E-06	1	71165	3,67E-05	0,3015
65147	0.00E+00	0		67158	0.00E+00	0		69165	3.33E-06	1	71166	6.67E-05	0.2236
65148	0.00E+00	0		67159	0.00E+00	0		69166	3.33E-06	1	71167	7.33E-05	0.2132
65149	3.33E-06	1		67160	0.00E+00	0		69167	6.67E-06	0.7071	71168	7.00E-05	0.2182
65150	6.67E-06	0 7071		67161	0.00E+00	0		69168	0.00E+00	0	71169	4.67E-05	0.2673
65151	0.00E+00	0		67162	0.00E+00	0		69169	6.67E-06	0 7071	71170	4 33E-05	0.2773
65152	0.00E+00	0		67163	0.00E+00	0		69170	0.00E+00	0	71171	2 67E-05	0.3535
65152	6.67E-06	0 7071		67164	0.00E+00	0		69171	0.00E+00	0	71172	1.33E-05	0.5
65154	3.33E-06	1		67165	0.00E+00	0		69172	0.00E+00	0	71172	3 33E-06	1
65155	3,33E-00	1		67166	0,00E+00	0		60173	0,00E+00	0	71173	5,55L-00	0 7071
65156	0.00E+00	0		67167	0,00E+00	0		60174	0,00E+00	0	71174	1.33E.05	0,7071
65157	0,00E+00	0		67168	0,00E+00	0		60175	0,00E+00	0	71175	0.00E+00	0,5
65158	0,00E+00	0		67160	0,00E+00	0		60176	0,00E+00	0	71170	6.67E.06	0 7071
65150	0,00E+00	0		67170	0,00E+00	0		70152	0,00E+00	0	71177	0,07E-00	0,7071
65160	0,00E+00	0		68147	0,00E+00	0		70153	0,00E+00	0	71170	0,00E+00	0
65161	0,00E+00	0		69149	0,00E+00	0		70154	0,00E+00	0	711/9	0,000+00	0
65162	0,00E+00	0		68140	0,00E+00	0		70155	0,00E+00	0	71100	0,00E+00	0
65162	0,00E+00	0		08149	0,00E+00	0		70150	0,00E+00	0	71181	0,00E+00	0
65163	0,00E+00	0		08150	0,00E+00	0		70157	0,00E+00	0	71182	0,00E+00	0
65164	0,00E+00	0		08151	0,00E+00	0		70158	0,00E+00	1	71185	0,00E+00	0
05105	0,00E+00	0		08152	0,00E+00	0		70159	3,33E-00	1	72154	0,00E+00	0
66145	0,00E+00	0		68153	0,00E+00	0		70160	3,33E-06	1	72155	0,00E+00	0
66146	0,00E+00	0		68154	0,00E+00	0		70161	2,33E-05	0,378	72156	0,00E+00	0
66147	0,00E+00	0		68155	0,00E+00	0		70162	1,00E-05	0,5773	72157	0,00E+00	0
66148	0,00E+00	0		68156	0,00E+00	0		70163	3,00E-05	0,3333	72158	0,00E+00	0
66149	0,00E+00	0		68157	3,33E-06	1		70164	1,33E-05	0,5	72159	0,00E+00	0
66150	0,00E+00	0		68158	6,6/E-06	0,7071		70165	1,6/E-05	0,4472	72160	0,00E+00	0
66151	3,33E-06	1		68159	3,33E-06	1		/0166	2,33E-05	0,378	72161	0,00E+00	0
66152	0,00E+00	0		68160	6,6/E-06	0,7071		/016/	2,00E-05	0,4082	72162	0,00E+00	0
66153	0,00E+00	0		68161	0,00E+00	0		70168	1,00E-05	0,5773	72163	1,6/E-05	0,4472
66154	0,00E+00	0		68162	0,00E+00	0		70169	3,33E-06	1	72164	1,67E-05	0,4472
66155	0,00E+00	0		68163	6,6/E-06	0,7071		/01/0	3,33E-06	1	72165	6,00E-05	0,2357
66156	0,00E+00	0		68164	3,33E-06	1		/01/1	3,33E-06	1	/2166	6,33E-05	0,2294
66157	0,00E+00	0		68165	0,00E+00	0		70172	0,00E+00	0	72167	1,07E-04	0,1768
66158	0,00E+00	0		68166	0,00E+00	0		70173	3,33E-06	1	72168	1,70E-04	0,14
66159	0,00E+00	0		68167	3,33E-06	1		70174	0,00E+00	0	72169	2,03E-04	0,128
66160	0,00E+00	0		68168	0,00E+00	0		70175	0,00E+00	0	72170	1,97E-04	0,1302
66161	0,00E+00	0		68169	0,00E+00	0		70176	0,00E+00	0	72171	1,43E-04	0,1525
66162	0,00E+00	0		68170	0,00E+00	0		70177	3,33E-06	1	72172	1,17E-04	0,169
66163	0,00E+00	0		68171	0,00E+00	0		70178	0,00E+00	0	72173	9,33E-05	0,189
66164	0,00E+00	0		68172	0,00E+00	0		70179	0,00E+00	0	72174	6,67E-05	0,2236
66165	0,00E+00	0		68173	0,00E+00	0		71151	0,00E+00	0	72175	3,00E-05	0,3333
66166	0,00E+00	0		69151	0,00E+00	0		71152	0,00E+00	0	72176	1,33E-05	0,5
66167	0,00E+00	0		69152	0,00E+00	0		71153	0,00E+00	0	72177	6,67E-06	0,7071
66168	0,00E+00	0	1	69153	0,00E+00	0	1	71154	0,00E+00	0	72178	6,67E-06	0,7071
67147	0,00E+00	0		69154	0,00E+00	0		71155	0,00E+00	0	72179	0,00E+00	0
67148	0,00E+00	0		69155	0,00E+00	0		71156	0,00E+00	0	72180	0,00E+00	0
67149	0,00E+00	0	1	69156	0,00E+00	0	1	71157	0,00E+00	0	72181	0,00E+00	0
67150	0,00E+00	0	1	69157	3,33E-06	1	1	71158	0,00E+00	0	72182	0,00E+00	0
67151	0,00E+00	0	1	69158	0,00E+00	0	1	71159	3,33E-06	1	72183	0,00E+00	0
67152	0,00E+00	0		69159	1,33E-05	0,5		71160	0,00E+00	0	72184	0,00E+00	0
67153	3,33E-06	1	1	69160	0,00E+00	0	1	71161	3,33E-06	1	73157	0,00E+00	0
67154	0,00E+00	0		69161	6,67E-06	0,7071	l	71162	6,67E-06	0,7071	73158	0,00E+00	0

711000.0000000.0000000.141843.358-060.76773761792.280-030.0332781716.570-0017171711000.000000741840.000-00761842.320-630.0332781733.000-000731310.000-000.741870.000-00761812.140-030.0345781743.330-061731610.000-000.741880.000-000.761841.470-030.0415781743.330-061731620.000-000.761841.470-030.0416781743.370-0610.254731620.020-000.000-00761857.930-040.0808781743.537-060.257731741.570-00.15180.000-00761857.950-040.0808781743.576-00.257731741.570-00.15160.000-00761801.560-00.257781813.481-00.020731741.570-00.15160.000-00761801.560-00.257781813.560-00.275731740.576-00.16160.500-00761900.500-0781813.560-00.257781813.500-00.020731733.750-00.1560.161761900.500-0781813.500-00.020781813.500-00.020781813.500-00.020781813.500-00.020781813.500-00.020781813.500-00.020781813.500-00.020 <t< th=""><th>Z/A</th><th>Yields</th><th>Error</th><th>Z/A</th><th>Yields</th><th>Error</th><th>Z/A</th><th>Yields</th><th>Error</th><th></th><th>Z/A</th><th>Yields</th><th>Error</th></t<>	Z/A	Yields	Error	Z/A	Yields	Error	Z/A	Yields	Error		Z/A	Yields	Error
13100 0.00E+00 0 14185 1.00E+05 0.7773 76180 2.32E-03 0.0379 78172 3.33E-06 1 13161 0.00E+00 0 74188 0.00E+00 0 76181 1.41E-05 0.00147 1.83E-0 1.1 13161 0.00E+00 0 76181 1.41E-05 0.04147 1.83E-05 1.33E-05 1.33E-05 1.33E-05 1.53E-05 1.21E-0 0.00E+00 0 76181 3.47E-05 0.0470 8.33E-0 1.21E-0 13161 5.37E-05 0.3255 75161 0.00E+00 0 76185 5.47E-04 0.082 78171 4.83E-04 0.035 13170 1.37E-05 0.2425 75161 0.00E+00 0 76185 1.37E-04 0.282 78181 4.31E-0 0.225 13171 1.37E-0 0.1324 0.1326 0.132 1.37E-0 0.125 73181 4.37E-0 0.225 13171 1.30E-0 <th0.138< th=""> <th0.3126< th=""> <th0.13< t<="" td=""><td>73159</td><td>0,00E+00</td><td>0</td><td>74184</td><td>3,33E-05</td><td>0,3162</td><td>76178</td><td>2,28E-03</td><td>0,0382</td><td></td><td>78170</td><td>3,33E-06</td><td>1</td></th0.13<></th0.3126<></th0.138<>	73159	0,00E+00	0	74184	3,33E-05	0,3162	76178	2,28E-03	0,0382		78170	3,33E-06	1
1316 0.00E-00 0 1418 0.00E-00 0 7618 2.12-03 0.0379 78173 3.00E-00 1 13161 0.00E-00 0 74188 0.00E-00 0 76182 1.91E-03 0.0315 78174 3.3E-06 1 13161 0.00E-00 0 76181 1.91E-03 0.0475 78174 3.3E-06 1 13161 0.00E-00 0 76181 1.91E-03 0.0475 78174 3.3E-06 1 13161 0.24E5 0.356 0.00E-00 0 76187 3.4TE-04 0.048 78174 4.35E-0 0.0270 131701 3.8TE-0 0.1364 0.00E-0 0 76187 3.4TE-0 0.135 71818 3.4E-0 0.027 13170 3.8TE-0 0.00E-0 0 76187 3.4TE-0 0.25 7818 3.4E-0 0.021 13171 3.8TE-0 0.00E-0 0.00E 0.25 78188 5.4E-0 0.021	73160	0,00E+00	0	74185	1,00E-05	0,5773	76179	2,28E-03	0,0382		78171	6,67E-06	0,7071
1316 0.00E:00 0 14187 0.00E:00 0 76181 1.4E-03 0.0315 78174 3.33E-06 1 73164 0.00E:00 0 76180 1.4TE-03 0.0415 78174 3.33E-06 1 73164 1.33E-05 0.5353 75161 0.00E+00 0 76183 1.4TE-03 0.0408 78174 5.33E-06 1.2 78174 1.07E-00 0.0353 77167 1.07E-00 0.016 76185 2.4TE-00 0.0414 78174 0.02E-0 78174 1.07E-0 0.0153 77174 0.02E-0 78175 0.02E-0 0.0215 78181 2.1E-0 0.0215 78184 2.01E-0 0.0215 78184 2.01E-0 0.0217 78184 2.01E-0 0.0217 78184 2.01E-0 0.0217 78184 5.21E-0 0.0217 71717 2.37E-0 0.111 7166 0.010 0.111 5.35E-0 0.214 73715 3.3E-06 0.111 71818 5.3E-0 0.21	73161	0,00E+00	0	74186	1,00E-05	0,5773	76180	2,32E-03	0,0379		78172	3,33E-06	1
1316 0.00E+00 0 74188 0.00E+00 0 76181 1.37E-00 0.0175 7.8175 3.33E.06 1 73164 0.00E+00 0 76184 1.57E-00 0.0559 7.8175 5.35E.05 0.257 73165 2.67E-65 0.3255 7.161 0.00E+00 0 7.6185 3.74E-00 0.0559 7.8175 4.87E-04 0.0185 73167 5.7EA-0 0.1335 7.5161 0.00E+00 0 7.6188 3.7E-04 0.018 0.00E+00 0 7.6188 3.7E-04 0.152 7.8181 2.91E-03 0.0338 73170 3.87E-44 0.005 7.516 0.00E+00 0 7.6188 3.37E-04 0.152 7.8181 2.91E-03 0.0338 73171 3.87E-44 0.0131 7.5163 3.38E-06 1 7.6198 3.47E-04 0.428 7.818 3.47E-03 0.242 73171 3.87E-44 0.131 7.516 3.47E-04 0.141 7.518 </td <td>73162</td> <td>0,00E+00</td> <td>0</td> <td>74187</td> <td>0,00E+00</td> <td>0</td> <td>76181</td> <td>2,14E-03</td> <td>0,0395</td> <td></td> <td>78173</td> <td>0,00E+00</td> <td>0</td>	73162	0,00E+00	0	74187	0,00E+00	0	76181	2,14E-03	0,0395		78173	0,00E+00	0
71460.00E.000761831.47E.030.01510817153.32E.061731661.33E.050.353107141900.00E.100761841.15E.030.05510781771.67E.040.1414731675.67E-630.2525751600.00E.100761885.67E-640.078781784.87E-040.0857731681.87E-040.1384751640.00E-000761882.13E-040.0850.0757781803.77E-040.0956731713.47E-040.0984751640.00E+000761881.37E-040.125781803.0291731723.47E-040.0987751660.00E+000761940.1250781834.52E-030.0247731723.47E-040.0187751690.026-0761941.37E-040.0287781855.57E-030.0247731723.47E-040.0187751703.32E-061.129761941.028-00.7717781855.57E-030.0217731733.35E-050.1219751760.00E+000.7717781855.57E-030.0217731743.35E-050.122751733.36E-061.12781855.57E-030.0251731753.56E-00.1219751760.021600.771781855.57E-030.0251731743.56E-00.122751763.26E-00.7717781855.67E-00.0257731753.56E-0	73163	0,00E+00	0	74188	0,00E+00	0	76182	1,93E-03	0,0415		78174	3,33E-06	1
133E-5 0.5 74190 0.00E-00 0 76848 1.15E-03 0.67848 78176 5.75E-05 0.2252 73164 0.57E-05 0.2245 75161 0.00E+00 0 76185 5.37E-04 0.0364 78178 4.87E-04 0.0383 73168 1.87E-04 0.1336 75163 0.00E+00 0 76188 3.37E-04 0.125 78178 4.37E-04 0.038 73171 3.47E-04 0.098 75166 0.00E+00 0 76189 3.47E-04 0.125 78181 4.3EE-03 0.021 73171 3.36E-04 0.0181 75160 0.0216 0.173 78183 4.3EE-03 0.021 73173 3.3EE-04 0.1081 75161 3.3EE-06 1.0171 0.00E-00 0.0171 78185 5.47E-03 0.0211 73171 3.1564 0.121 75171 2.00E-04 0.128 78185 5.37E-03 0.0211 73171 <th1.60e-04< th=""> <th0.123< th=""> 75171</th0.123<></th1.60e-04<>	73164	0,00E+00	0	74189	0,00E+00	0	76183	1,47E-03	0,0476		78175	3,33E-06	1
1716 2.67E-05 0.2353 75160 0.00E-00 0 76185 7.63E-0 0.67814 8.7817 1.67E-00 0.005 73168 1.67E-00 0.1348 7.5160 0.00E-00 0 76188 5.67E-00 0.0081 0.7518 3.67E-04 0.0085 73169 3.75E-04 0.0085 73169 0.00E-00 0 76188 3.17E-04 0.008 73169 0.00E-00 0.75190 0.00E-00 0.2731 7.8182 3.91E-00 0.0021 73172 3.47E-04 0.0005 7.5163 0.01E-00 0.0121 7.6191 0.43720 0.7313 7.8183 4.82E-03 0.0241 73173 3.13E-04 0.1031 7.5165 0.4704 0.1291 7.6195 0.67760 7.8185 5.75E-03 0.0217 73173 3.13E-04 0.1313 7.7165 0.0210 0.7118 5.75E-03 0.021 73174 3.05E-05 0.142 7.5173 3.25E-03 0.021 7.8185 5.75E-03	73165	1,33E-05	0,5	74190	0,00E+00	0	76184	1,15E-03	0,0539		78176	5,33E-05	0,25
13167 5.77E-03 0.2425 75163 0.00E+00 0 76188 3.47E-04 0.079 7178 4.84E-04 0.0385 73168 1.87E-04 0.038 75164 0.00E+00 0 76188 3.17E-04 0.038 78180 1.76E-03 0.0385 73170 3.47E-04 0.098 75165 0.00E+00 0 76180 0.15C-0 0.47180 0.43250 0.15C 78180 2.91E-03 0.0231 73172 3.47E-04 0.098 75161 3.33E-06 1 76191 2.03E-05 0.482 78180 5.42E-03 0.024 73173 2.87E-04 0.183 75171 2.00E+00 0.412 76191 1.33E-0 1.33 78180 5.7EE-0 0.021 76193 3.33E-0 1.818 4.34E-03 0.021 73174 1.40E-04 0.143 75171 2.00E+0 0.077 7818 3.42E-03 0.021 73171 3.33E-0 0.12E 75171 3.22E-0<	73166	2,67E-05	0,3535	75161	0,00E+00	0	76185	7,93E-04	0,0648		78177	1,67E-04	0,1414
1318 1.87E-04 0.138 7164 0.00E-00 76187 3.78E-04 0.0088 78179 9.37E-04 0.0058 73110 1.83E-04 0.0058 75165 0.00E-00 0 76188 2.15E-04 0.152 78188 2.91E-03 0.0338 73171 3.37E-04 0.005 75165 0.3328-0 1 76190 6.00E-05 0.2377 78188 3.91E-03 0.0217 73173 2.87E-04 0.0131 75168 3.33E-05 1.012 70102 0.02465 0.2371 78188 5.72E-03 0.024 73174 3.03E-04 0.131 75170 9.33E-05 0.131 75170 9.33E-05 0.131 75170 9.33E-05 0.131 75170 9.33E-05 0.211 77170 0.2016-00 0.0 78189 3.45E-03 0.033 73178 8.07E-05 0.4727 75175 1.32E-03 0.051 77160 0.06E-00 0 78191 3.45E-03 0.033	73167	5,67E-05	0,2425	75162	0,00E+00	0	76186	5,63E-04	0,0769		78178	4,83E-04	0,083
1316 1332-04 0.1348 75164 0.00E-100 0 76188 1.71E-04 0.152 78188 1.76E-03 0.00338 73171 3.47E-04 0.008 75165 0.00E-100 0 76190 6.0015 78182 3.91E-03 0.0338 73172 3.47E-04 0.008 75163 0.33E-06 1 76190 4.03E-05 0.7273 78183 4.83E-03 0.0217 73174 3.33E-04 0.108 75160 0.7476 0.4129 70195 1.0560 0.573 78185 5.75E-03 0.0217 73175 0.6044 0.143 75171 2.00E-04 0.095 6.67E-0 0.071 78185 4.57E-03 0.021 73171 1.00E-04 0.128 75171 2.00E-04 0.091 0.01610 0.0 78183 3.67E-03 0.021 73171 1.00E-05 0.472 75171 1.32E-03 0.050 7116 0.00E-10 0.0 78183 3.67E-0 0.001	73168	1,87E-04	0,1336	75163	0,00E+00	0	76187	3,47E-04	0,098		78179	9,37E-04	0,0596
1310 3.47E-04 0.098 75160 0.00E+00 0 76189 1.57E-04 0.1862 78182 3.91E-04 0.00391 73171 3.30E-04 0.008 75163 3.33E-06 1 76191 4.31E-0 0.0032 78183 4.83E-03 0.02267 73173 2.87E-04 0.0078 75169 3.33E-06 1.1 76191 4.31E-0 0.0082 78188 5.42E-03 0.0247 73175 2.03E-04 0.128 77170 7.0151 5.07E-06 0.7071 78185 5.72E-03 0.0251 73176 1.00E-04 0.1435 75172 3.40E-04 0.0297 7166 0.026+00 0.0 78189 3.34E-03 0.0261 73178 8.75E-05 0.4102 75175 1.24E-03 0.050 7116 0.00E+00 0.0 78189 3.34E-03 0.0324 73181 1.67E-05 0.4127 75175 1.24E-03 0.050 7116 0.00E+00 78193 3.34E-03	73169	1,83E-04	0,1348	75164	0,00E+00	0	76188	2,13E-04	0,125		78180	1,76E-03	0,0435
3.30 3.30 0.1008 75160 0.00 0 7600 0.000-50 0.0237 75182 3.010-01 0.0211 73172 3.374-04 0.008 75168 3.336-06 1 7619 1.000-05 0.000-55 0.0242 78184 5.456-0 0.0247 73173 2.375-04 0.013 75169 0.02044 0.1291 76190 0.000-05 0.0160 78185 5.756-03 0.0214 73174 1.006-04 0.121 75171 0.000-04 0.1291 7116 0.000-0 78185 5.756-0 0.0217 73178 3.0504 0.161 7177 0.000-0 0 78189 3.080-0 0.00 78190 3.080-0 0.001 78190 3.080-0 0.001 78190 3.080-0 0.01 78190 3.080-0 0.01 78190 3.080-0 0.01 78190 3.080-0 0.01 78190 3.080-0 0.01 78190 3.080-0 0.01 78190 3.080-0	73170	3,47E-04	0,098	75165	0,00E+00	0	76189	1,37E-04	0,1562		78181	2,91E-03	0,0338
1312 3.476-04 0.098 75167 3.38-06 1 76192 4.38-05 0.0222 78183 4.888-03 0.0224 73174 3.182-04 0.1037 75186 3.7510-0 1.67E-05 0.472 71613 1.00E-05 0.773 78185 5.75E-03 0.0241 73175 2.03E-04 0.128 75170 1.00E-04 0.1281 76194 1.33E-06 0.701 7.8185 5.75E-03 0.0214 73177 1.00E-04 0.1434 75171 2.00E-04 0.00E-00 0.0 78189 3.80E-03 0.021 73178 0.0765 0.4472 75175 1.24E-03 0.0502 77170 0.00E-00 0 78192 1.80E-03 0.032 73181 1.07E-05 0.4772 75175 1.32E-03 0.0502 77171 0.00E-00 0 78193 1.32E-03 0.0502 77171 0.00E-00 0 78193 1.32E-03 0.0502 73184 0.00E-00 0 <t< td=""><td>73171</td><td>3,30E-04</td><td>0,1005</td><td>75166</td><td>0,00E+00</td><td>0</td><td>76190</td><td>6,00E-05</td><td>0,2357</td><td></td><td>78182</td><td>3,91E-03</td><td>0,0291</td></t<>	73171	3,30E-04	0,1005	75166	0,00E+00	0	76190	6,00E-05	0,2357		78182	3,91E-03	0,0291
'131732,87E-040,10780,71683,33E-061'17022,00E-050,4028'181485,42E-030,0247'131752,33E-060,1231'711690,33E-050,189'1,01900,5373'8,1855,75E-030,024'131751,60E-040,143'71170,33E-050,199'1,312-050,5'718185,75E-030,0271'1,7171,60E-040,143'71170,50E-040,771'711600,00E+000'718183,34E-030,0271'1,7175,75E-040,777'711600,00E+000'718183,34E-030,0261'1,7183,33E-050,312'711711,24E-030,0518'711670,00E+000'718192,32E-030,381'1,7181,37E-050,472'711711,24E-030,052'711700,00E+000'718191,32E-030,052'1,7181,07E-050,472'717171,24E-030,052'711700,00E+000'718191,32E-030,057'1,7181,00E-050,771'71711,22E-070,00E+000'718191,32E-030,050'711710,00E+000'718191,32E-030,050'1,7181,00E-050,771'717181,32E-050,02E'711711,32E-050,02E'71181,32E-050,02E'71181,32E-050,23E'71181,32E-050,23E'71181,32E-050,23E'71181,3	73172	3,47E-04	0,098	75167	3,33E-06	1	76191	4,33E-05	0,2773		78183	4,83E-03	0,0262
131743.13E-040.1031751691.67E-050.472761931.00E-050.5773781855.75E-030.0241731751.00E-040.128751720.0DE-040.1291761956.67E-060.7717781875.7E-030.0251731771.00E-040.1826751723.0DE-040.1291761966.33E-060.7071781875.2TE-030.0251731788.67E-050.1961751735.67E-040.00E0.00E-000781993.8DE-030.0362731801.67E-050.4472751751.2E-030.0502711600.00E-000781921.2BE-030.0363731811.67E-050.4472751751.2E-030.0502711700.00E-000781941.2DE-030.0571731831.00E-050.5773751781.3EE-030.0522711700.00E-000781941.2DE-030.0571731840.00E-000751876.0E-040.017711741.3EE-00.0582781911.3EE-040.0871731850.00E-000751836.0E-040.017711741.3EE-00.0587781901.3EE-040.0871741600.00E-000751836.0E-040.2711711752.0E-040.0387781901.3EE-040.1352741630.00E-000751836.0E-040.271711751.3EE-040.0387781901.3EE-040	73173	2,87E-04	0,1078	75168	3,33E-06	1	76192	2,00E-05	0,4082		78184	5,42E-03	0,0247
13175 2,03E-04 0,128 75170 9,03E-05 0,199 76194 1,3E-05 0,5 78186 5,49E-03 0,0216 73177 1,00E-04 0,1281 75173 3,00E-04 0,0291 76195 6,67E-06 0,7711 78188 3,24E-05 0,0271 73178 8,67E-05 0,191 75173 5,67E-04 0,0767 77166 0,00E-00 0 78189 3,38E-05 0,33E-05 0,33E-05 0,33E-05 0,33E-05 0,33E-05 0,4722 75175 1,2E-03 0,0503 77169 0,00E-00 0 78192 1,80E-03 0,038 73181 1,67E-05 0,4722 75171 1,32E-03 0,0502 71170 0,00E-00 0 78195 6,0E-04 0,071 73184 0,00E+00 0 75181 3,2E-04 0,022 71172 0,00E+00 0 75183 6,6DE-04 0,717 7,7175 1,33E-05 0,52 78195 3,4BE-04 0,070 73185	73174	3,13E-04	0,1031	75169	1,67E-05	0,4472	76193	1,00E-05	0,5773		78185	5,75E-03	0,024
131711.60E-040.1433751712.00E-040.1291761956.67E-050.7071781875.27E-030.0211731788.67E-050.181751735.67E-040.076771660.00E-000781893.0E-030.0257731793.33E-050.3162751748.7E-040.061671760.00E+000781903.13E-030.0326731801.67E-050.4472751751.24E-030.050271700.00E+000781931.32E-030.033731811.07E-050.4771751771.32E-030.0502717100.00E+000781931.32E-030.0517731821.00E-050.77711.72E-030.0527771710.00E+000781931.32E-040.0771731840.00E+000751836.68E-040.071717171.03E-050.2085781964.27E-040.084731850.00E+000751836.68E-040.021717751.03E-050.2085781964.27E-040.084741630.00E+000751836.68E-040.02771761.32E-050.0367781901.43E-040.132741640.00E+000751836.68E-040.02771781.32E-030.0368781901.43E-040.132741640.00E+000751836.68E-040.273771893.04E-040.0331791766.7E-060.28	73175	2,03E-04	0,128	75170	9,33E-05	0,189	76194	1,33E-05	0,5		78186	5,49E-03	0,0246
731771,00E-040,1826751723,40E-040,0099761963,33E-061781884,34E-030,0277731788,67E-050,1961751735,67E-040,0767771160,00E+000781803,13E-030,0326731801,67E-050,4472751751,24E-030,0518771690,00E+000781912,25E-030,0324731811,67E-050,4472751761,32E-030,0503771170,00E+000781931,32E-030,0573731821,00E-050,5773751791,32E-030,0527771710,00E+000781931,32E-030,0577731836,67E-060,7711713181,39E-030,0489771710,00E+000781941,00E-030,077731840,00E+000751871,32E-030,0527771710,00E+000781973,43E-040,078731840,00E+000751834,87E-040,0221771752,00E-040,129781973,43E-040,1326741630,00E+000751833,66E-040,071771747,67E-00,087781973,43E-040,1326741630,00E+000751831,03E-040,1022771744,33E-040,036791754,00E-050,273741640,00E+000751831,33E-050,472771841,57E-030,036791754,00E-050	73176	1,60E-04	0,1443	75171	2,00E-04	0,1291	76195	6,67E-06	0,7071		78187	5,27E-03	0,0251
731788,67E-030.1961751735,67E-040.0767771660.00E+000781893,80E-030.0296731793,33E-050.3162751748,77E-040.06167711670.00E+000781911,25E-030.0312731811,67E-050,4472751761,32E-030.0503771690.00E+000781911,32E-030.0503731821,07E-050,7717717171,32E-030.0502771700.00E+000781931,32E-030.0573731830,00E+000751731,32E-030.0527771720,00E+000781956,80E-040.071731840,00E+000751838,63E-040,0621771731,33E-050.55781954,32E-040.0827731850,00E+000751846,60E+040,071771747,67E-050.2085781991,43E-040,1324741630,00E+000751846,06E+040,122771752,0E0+40,12541,43E-040,1254741640,00E+000751841,0E0+050,2737771781,57E-030,46781991,43E-040,1254741640,00E+000751861,67E+050,2737771833,1E-050,0361791764,0E-050,2737741650,00E+000751861,67E+050,2773771833,1E-050,0397791761,62E+050,3737 <td>73177</td> <td>1,00E-04</td> <td>0,1826</td> <td>75172</td> <td>3,40E-04</td> <td>0,099</td> <td>76196</td> <td>3,33E-06</td> <td>1</td> <td></td> <td>78188</td> <td>4,34E-03</td> <td>0,0277</td>	73177	1,00E-04	0,1826	75172	3,40E-04	0,099	76196	3,33E-06	1		78188	4,34E-03	0,0277
731793.33E-050.3162751748.77E-040.0616771670.00E+000781903.13E-030.0326731801.67E-050.4472751751.24E-030.0503771100.00E+000781912.52E-030.0381731821.00E-050.5773751771.32E-030.0502771700.00E+000781931.32E-030.0502731840.00E+000751791.32E-030.0527771710.00E+000781941.00E-030.0577731840.00E+000751818.63E-040.021771731.33E-050.5781964.27E-040.0884731850.00E+000751818.63E-040.0621771731.33E-050.5781964.27E-040.0884731860.00E+000751816.60E-040.071771777.67E-040.0587781991.87E-040.0587741630.00E+000751831.00E-040.022771779.67E-040.0587781991.87E-040.152741630.00E+000751851.03E-040.1759717192.23E-030.0364791764.32E-040.0577741640.00E+000751891.67E-050.2377771833.71E-030.0397791771.00E-050.5773741640.06E+000751891.67E-050.2773771833.71E-030.0399791813.30E-050	73178	8,67E-05	0,1961	75173	5,67E-04	0,0767	77166	0,00E+00	0		78189	3,80E-03	0,0296
13180 1.67E-05 0.4472 75175 1.24E-03 0.0518 77168 0.00E+00 0 78191 2.25E-03 0.033 73181 1.67E-05 0.4771 75176 1.32E-03 0.0502 77170 0.00E+00 0 78192 1.80E-03 0.0533 73184 0.00E+00 0 78177 1.32E-03 0.0527 77171 0.00E+00 0 78194 1.00E-03 0.0573 73184 0.00E+00 0 75178 1.32E-03 0.0527 77171 0.00E+00 0 78194 1.00E-03 0.0573 73185 0.00E+00 0 75181 6.00E-04 0.021 77175 2.00E+04 0.123 78198 2.90E-04 0.123 74160 0.00E+00 0 75183 3.0E-04 0.123 77177 9.47E-04 0.0587 78198 2.90E-04 0.123 74160 0.00E+00 0 75183 3.0E-05 0.237 <th7717< th=""> 2.32E-03 0.038</th7717<>	73179	3,33E-05	0,3162	75174	8,77E-04	0,0616	77167	0,00E+00	0		78190	3,13E-03	0,0326
13181 1.67E-05 0.4472 75176 1.32E-03 0.0503 77169 0.00E+00 0 78192 1.80E-03 0.0503 73182 0.00E+00 0 78194 1.32E-03 0.0502 77170 0.00E+00 0 78193 1.32E-03 0.0577 73183 0.00E+00 0 75178 1.32E-03 0.0527 77172 0.00E+00 0 78195 6.80E-04 0.077 73185 0.00E+00 0 75180 8.63E-04 0.0527 77173 1.33E-05 0.208 78197 3.43E-04 0.0887 74158 3.33E-06 1 75181 6.60E-04 0.012 77175 2.00E-04 0.0121 78198 2.90E-04 0.1521 74160 0.00E+00 0 75183 3.60E-04 0.1736 77179 2.23E-03 0.0364 78201 8.33E-05 0.2377 74161 0.00E+00 0 75187 4.67E-05 0.2472 77183 3.41E-03 0.0303 <td>73180</td> <td>1,67E-05</td> <td>0,4472</td> <td>75175</td> <td>1,24E-03</td> <td>0,0518</td> <td>77168</td> <td>0,00E+00</td> <td>0</td> <td></td> <td>78191</td> <td>2,25E-03</td> <td>0,0384</td>	73180	1,67E-05	0,4472	75175	1,24E-03	0,0518	77168	0,00E+00	0		78191	2,25E-03	0,0384
13182 1.00E-05 0.5773 75177 1.32E-03 0.0502 77170 0.00E+00 0 78193 1.52E-03 0.0577 73184 0.00E+00 0 75179 1.20E-03 0.0527 77172 0.00E+00 0 78195 6,80E-04 0.077 73186 0.00E+00 0 75180 8,63E-04 0.0621 77173 1.33E-05 0.5 78196 4,27E-04 0.0884 73186 0.00E+00 0 75181 6,60E-04 0.071 77175 2.00E-04 0,1291 78198 2.90E-04 0.1722 74150 0.00E+00 0 75181 3.0E-04 0.1324 77175 2.00E-04 0.1291 78199 1.37E-04 0.1325 74161 0.00E+00 0 75188 1.03E-05 0.2357 77179 2.32E-03 0.0364 79175 4.00E-05 0.2377 74163 0.00E+00 0 75188 1.33E-05 0.4172 77182 3.71E-03 0.0461 </td <td>73181</td> <td>1,67E-05</td> <td>0,4472</td> <td>75176</td> <td>1,32E-03</td> <td>0,0503</td> <td>77169</td> <td>0,00E+00</td> <td>0</td> <td></td> <td>78192</td> <td>1,80E-03</td> <td>0,043</td>	73181	1,67E-05	0,4472	75176	1,32E-03	0,0503	77169	0,00E+00	0		78192	1,80E-03	0,043
73183 6.67E-06 0.7711 75178 1.39E-03 0.0489 77171 0.00E+00 0 78194 1.00E-03 0.0577 73184 0.00E+00 0 75179 1.20E-03 0.0527 77172 0.00E+00 0 78196 4.27E-04 0.0827 73185 0.00E+00 0 75180 6.60E-04 0.071 77173 1.33E-05 0.205 78197 3.43E-04 0.0985 74158 3.3E-06 1 75182 8.60E-04 0.092 77175 2.00E-04 0.1291 78198 2.90E-04 0.1325 74160 0.00E+00 0 75183 1.03E-04 0.132 77179 9.67E-04 0.0887 78200 1.43E-04 0.1525 74161 0.00E+00 0 75185 0.60E-05 0.2377 77178 3.57E-03 0.0386 79175 4.00E-05 0.2877 74164 0.00E+00 0 75188 1.33E-05 0.55 771818 3.54E-03 0.0303 </td <td>73182</td> <td>1,00E-05</td> <td>0,5773</td> <td>75177</td> <td>1,32E-03</td> <td>0,0502</td> <td>77170</td> <td>0,00E+00</td> <td>0</td> <td></td> <td>78193</td> <td>1,32E-03</td> <td>0,0503</td>	73182	1,00E-05	0,5773	75177	1,32E-03	0,0502	77170	0,00E+00	0		78193	1,32E-03	0,0503
73184 0,00E+00 0 75179 1,20E-03 0,0527 7172 0,00E+00 0 78195 6,80E-04 0,07 73186 0,00E+00 0 75180 8,63E-04 0,0621 77173 1,33E-05 0.5 78196 4,27E-04 0,0887 73186 0,00E+00 0 75181 6,60E-04 0,0271 77175 2,00E-04 0,1201 78198 2,90E-04 0,1072 74159 0,00E+00 0 75181 1,00E-04 0,012 77178 1,57E-03 0,046 78201 8,33E-05 0,2 74161 0,00E+00 0 75187 1,03E-04 0,1726 77178 1,57E-03 0,046 78201 8,33E-05 0,2 74163 0,00E+00 0 75187 4,67E-05 0,2637 77180 3,53E-03 0,0307 79177 1,00E-05 0,2737 74164 0,00E+00 0 75189 1,67E-05 0,2173 77183 3,71E-03 0,0297	73183	6,67E-06	0,7071	75178	1,39E-03	0,0489	77171	0,00E+00	0		78194	1,00E-03	0,0577
73185 0.00E+00 0 75180 8,63E-04 0.0621 7173 1,33E-05 0,5 78196 4,27E-04 0.0884 73186 0.00E+00 0 75181 6,60E-04 0,071 77174 7,67E-05 0.2085 78197 3,43E-04 0.0987 74159 0.00E+00 0 75183 3,60E-04 0.0287 77176 4,33E-04 0.0877 78198 2,90E-04 0,1525 74161 0.00E+00 0 75183 1,30E-04 0,1796 77178 1,57E-03 0.046 78201 8,33E-05 0,2 74163 0.00E+00 0 75186 6,00E-05 0,2357 77178 3,04E-05 0,0311 79176 6,07E-06 0,0717 74163 0,00E+00 0 75188 1,33E-05 0,573 77180 3,04E-03 0,0307 79177 1,07E-04 0,1573 74164 0,00E+00 0 75189 1,00E-05 0,5773 77183 3,71E-03 0,0309<	73184	0,00E+00	0	75179	1,20E-03	0,0527	77172	0,00E+00	0		78195	6,80E-04	0,07
73186 0,00E+00 0 75181 6,60E-04 0,071 77174 7,67E-05 0,2085 78197 3,43E-04 0,0072 74158 3,33E-06 1 75182 4,87E-04 0,0827 77175 2,00E-04 0,121 78198 2,90E-04 0,1072 74160 0,00E+00 0 75184 1,90E-04 0,1324 77177 9,67E-04 0,0366 78101 8,33E-05 0,2 74161 0,00E+00 0 75186 6,00E-05 0,2357 77179 2,23E-03 0,0366 79175 4,00E-05 0,2887 74161 0,00E+00 0 75186 6,00E-05 0,2573 77181 3,53E-03 0,0307 79177 1,00E-05 0,573 74165 0,00E+00 0 75189 1,67E-05 0,4472 77183 3,71E-03 0,0297 79178 3,00E-05 0,573 74166 1,33E-05 0,5 75190 1,00E-05 0,573 77183 3,71E-03 0,0	73185	0,00E+00	0	75180	8,63E-04	0,0621	77173	1,33E-05	0,5		78196	4,27E-04	0,0884
74158 3,33E-06 1 75182 4,87E-04 0,0827 77175 2,00E-04 0,121 78198 2,90E-04 0,172 74159 0,00E+00 0 75183 3,00E-04 0,0962 77176 4,33E-04 0,0877 78109 1,87E-04 0,1336 74161 0,00E+00 0 75185 1,03E-04 0,1796 77178 1,57E-03 0,046 78201 8,33E-05 0,2 74163 0,00E+00 0 75186 6,00E+05 0,2357 77180 3,04E-03 0,0386 79175 4,00E-05 0,2887 74164 0,00E+00 0 75187 4,67E-05 0,2673 77180 3,04E-03 0,0307 79177 1,00E-05 0,5737 74165 0,00E+00 0 75189 1,67E-05 0,4472 77182 3,7TE-03 0,0297 79178 3,00E-04 0,1562 74165 3,33E-06 1 77182 3,7E-03 0,0399 791813 3,3E-04 0,05	73186	0,00E+00	0	75181	6,60E-04	0,071	77174	7,67E-05	0,2085		78197	3,43E-04	0,0985
74159 0,00E+00 0 75183 3,60E-04 0,0962 77176 4,33E-04 0,0877 78199 1,87E-04 0,1336 74160 0,00E+00 0 75184 1,90E-04 0,1324 77177 9,67E-04 0,0587 78200 1,43E-04 0,1525 74161 0,00E+00 0 75186 6,00E-05 0,2357 77178 1,57E-03 0,046 78201 8,33E-05 0,287 74163 0,00E+00 0 75187 4,67E-05 0,2472 77182 3,53E-03 0,0301 79176 4,00E-05 0,2877 74165 0,00E+00 0 75189 1,67E-05 0,4472 77182 3,71E-03 0,0297 79178 3,00E-05 0,5773 74164 1,33E-05 0,51 75190 1,00E-05 0,5773 77183 3,71E-03 0,0390 79180 3,30E-06 0,1562 74167 3,33E-06 1 77184 3,47E-03 0,0390 79183 3,30E-04	74158	3,33E-06	1	75182	4,87E-04	0,0827	77175	2,00E-04	0,1291		78198	2,90E-04	0,1072
74160 0,00E+00 0 75184 1,90E-04 0,1324 77177 9,67E-04 0,0587 78200 1,43E-04 0,1525 74161 0,00E+00 0 75185 1,03E-04 0,1796 77178 1,57E-03 0,046 78201 8,33E-05 0,2887 74163 0,00E+00 0 75187 4,67E-05 0,2673 77180 3,04E-03 0,0331 79176 6,67E-06 0,7071 74165 0,00E+00 0 75189 1,67E-05 0,4472 77183 3,71E-03 0,0297 79178 3,00E-05 0,3333 74166 1,33E-05 0,5 75190 1,00E-05 0,5773 77183 3,71E-03 0,0297 79178 3,30E-04 0,1052 74167 3,33E-05 0,3162 75192 0,00E+00 0 77185 2,91E-03 0,0389 79183 3,30E-04 0,00573 74169 1,20E-04 0,1667 76163 3,33E-06 1 77186 2,20E-03	74159	0,00E+00	0	75183	3,60E-04	0,0962	77176	4,33E-04	0,0877		78199	1,87E-04	0,1336
74161 0,00E+00 0 75185 1,03E-04 0,1796 77178 1,57E-03 0,046 78201 8,33E-05 0,23 74162 0,00E+00 0 75186 6,00E-05 0,2357 77179 2,23E-03 0,0386 79175 4,00E-05 0,2887 74163 0,00E+00 0 75188 1,33E-05 0,2573 77180 3,04E-03 0,0331 79176 6,67E-06 0,7071 74164 0,00E+00 0 75188 1,33E-05 0,5 77181 3,53E-03 0,0297 79178 3,00E-05 0,5773 74165 0,00E+00 0 75190 1,00E-05 0,5773 77183 3,71E-03 0,0297 79178 3,0E-04 0,1562 74167 3,33E-05 0,3162 75190 1,00E-05 0,5773 77184 3,47E-03 0,0381 79183 3,30E-04 0,1005 74168 3,33E-05 0,3162 75190 1,00E+00 0 77187 1,73E-03 0,0381 79183 2,68E-03 0,0352 74170 2,57E-04 <t< td=""><td>74160</td><td>0,00E+00</td><td>0</td><td>75184</td><td>1,90E-04</td><td>0,1324</td><td>77177</td><td>9,67E-04</td><td>0,0587</td><td></td><td>78200</td><td>1,43E-04</td><td>0,1525</td></t<>	74160	0,00E+00	0	75184	1,90E-04	0,1324	77177	9,67E-04	0,0587		78200	1,43E-04	0,1525
74162 0,00E+00 0 75186 6,00E+05 0,2357 77179 2,23E-03 0,0386 79175 4,00E+05 0,2887 74163 0,00E+00 0 75187 4,67E-05 0,2673 77180 3,04E-03 0,0331 79176 6,67E-06 0,7071 74164 0,00E+00 0 75188 1,33E-05 0,5 77181 3,53E-03 0,0307 79177 1,00E-05 0,5773 74165 0,00E+00 0 75189 1,67E-05 0,4472 77183 3,71E-03 0,0297 79178 3,00E-05 0,53333 74166 1,33E-05 0,5 75190 1,00E-05 0,5773 77183 3,71E-03 0,0299 79179 1,37E-04 0,1562 74168 3,33E-05 0,3162 75192 0,00E+00 0 77185 2,91E-03 0,0338 79181 7,23E-04 0,0679 74169 1,20E-04 0,1667 76163 0,33E-06 1 77186 2,29E-03 0,0322 79183 2,68E-03 0,0352 74171 4,00E-04	74161	0,00E+00	0	75185	1,03E-04	0,1796	77178	1,57E-03	0,046		78201	8,33E-05	0,2
74163 0,00E+00 0 75187 4,67E-05 0,2673 77180 3,04E-03 0,0331 79176 6,67E-06 0,7711 74164 0,00E+00 0 75188 1,33E-05 0,5 77181 3,53E-03 0,0307 79177 1,00E-05 0,5773 74165 0,00E+00 0 75189 1,67E-05 0,4472 77182 3,77E-03 0,0297 79178 3,00E-05 0,3333 74166 1,33E-05 0,5 75190 1,00E-05 0,5773 77183 3,71E-03 0,0297 79179 1,37E-04 0,1562 74167 3,33E-06 1 77184 3,47E-03 0,0399 79180 3,30E-04 0,0105 74168 3,33E-05 0,3162 75192 0,00E+00 0 77185 2,91E-03 0,0338 79181 7,23E-04 0,0679 74169 1,20E-04 0,1667 76163 3,33E-06 1 77186 2,20E-03 0,0389 79182 1,57E-03 0,0441 74170 2,57E-04 0,1139 76164 0,00E+00 <	74162	0,00E+00	0	75186	6,00E-05	0,2357	77179	2,23E-03	0,0386		79175	4,00E-05	0,2887
74164 0,00E+00 0 75188 1,33E-05 0,5 77181 3,53E-03 0,0307 79177 1,00E-05 0,5773 74165 0,00E+00 0 75189 1,67E-05 0,4472 77182 3,7TE-03 0,0297 79178 3,00E-05 0,3333 74166 1,33E-05 0,5 75190 1,00E-05 0,5773 77183 3,71E-03 0,0297 79178 3,00E-05 0,3333 74167 3,33E-06 1 75191 3,33E-06 1 77184 3,47E-03 0,0309 79180 3,30E-04 0,1005 74168 3,33E-05 0,3162 75192 0,00E+00 0 77185 2,91E-03 0,0389 79181 7,23E-04 0,0679 74169 1,20E-04 0,1667 76163 3,33E-06 1 77187 1,73E-03 0,0439 79182 1,57E-03 0,0461 74171 2,0E-04 0,013 76165 0,00E+00 0 77188 1,22E-03 0,0522 79184 3,88E-03 0,0223 74173 6,57E-04 0,07	74163	0,00E+00	0	75187	4,67E-05	0,2673	77180	3,04E-03	0,0331		79176	6,67E-06	0,7071
74165 0,00E+00 0 75189 1,67E-05 0,4472 77182 3,77E-03 0,0297 79178 3,00E-05 0,3333 74166 1,33E-05 0,5 75190 1,00E-05 0,5773 77183 3,71E-03 0,0299 79179 1,37E-04 0,1562 74167 3,33E-06 1 75191 3,33E-06 1 77184 3,47E-03 0,0309 79180 3,30E-04 0,1005 74168 3,33E-05 0,3162 75192 0,00E+00 0 77185 2,91E-03 0,0338 79181 7,23E-04 0,0679 74169 1,20E-04 0,1667 76163 3,33E-06 1 77186 2,20E-03 0,0389 79182 1,57E-03 0,0461 74170 2,57E-04 0,1139 76164 0,00E+00 0 77188 1,22E-03 0,0522 79184 3,88E-03 0,0253 74172 5,53E-04 0,0712 76167 0,00E+00 0 77190 6,60E-04 0,071 79186 6,33E-03 0,0223 74173 6,57E-04	74164	0,00E+00	0	75188	1,33E-05	0,5	77181	3,53E-03	0,0307		79177	1,00E-05	0,5773
74166 1,33E-05 0,5 75190 1,00E-05 0,5773 77183 3,71E-03 0,0299 79179 1,37E-04 0,1562 74167 3,33E-06 1 75191 3,33E-06 1 77183 3,71E-03 0,0309 79180 3,30E-04 0,1005 74168 3,33E-05 0,3162 75192 0,00E+00 0 77185 2,91E-03 0,0389 79181 7,23E-04 0,0679 74169 1,20E-04 0,1667 76163 3,33E-06 1 77186 2,20E-03 0,0389 79182 1,57E-03 0,0461 74170 2,57E-04 0,1139 76164 0,00E+00 0 77188 1,22E-03 0,0522 79184 3,88E-03 0,0293 74172 5,53E-04 0,0776 76166 0,00E+00 0 77189 9,43E-04 0,091 79185 5,17E-03 0,0223 74173 6,57E-04 0,0712 76167 0,00E+00 0 77191 3,80E-04 0,0936 79187 7,32E-03 0,0223 74174 7,47E-04	74165	0,00E+00	0	75189	1,67E-05	0,4472	77182	3,77E-03	0,0297		79178	3,00E-05	0,3333
74167 3,33E-06 1 75191 3,33E-06 1 77184 3,47E-03 0,0309 79180 3,30E-04 0,1005 74168 3,33E-05 0,3162 75192 0,00E+00 0 77185 2,91E-03 0,0338 79181 7,23E-04 0,0679 74169 1,20E-04 0,1667 76163 3,33E-06 1 77186 2,20E-03 0,0389 79182 1,57E-03 0,0461 74170 2,57E-04 0,1139 76164 0,00E+00 0 77187 1,73E-03 0,0439 79183 2,68E-03 0,0253 74171 4,00E-04 0,0913 76165 0,00E+00 0 77188 1,22E-03 0,0522 79184 3,88E-03 0,0253 74173 6,57E-04 0,0712 76167 0,00E+00 0 77190 6,60E-04 0,071 79186 6,33E-03 0,0229 74174 7,47E-04 0,6668 76168 0,00E+00 0 77191 3,80E-04 0,0936 79187 7,32E-03 0,0213 74175 7,50E-04 0,	74166	1,33E-05	0,5	75190	1,00E-05	0,5773	77183	3,71E-03	0,0299		79179	1,37E-04	0,1562
74168 3,33E-05 0,3162 75192 0,00E+00 0 77185 2,91E-03 0,0338 79181 7,23E-04 0,0679 74169 1,20E-04 0,1667 76163 3,33E-06 1 77186 2,20E-03 0,0389 79182 1,57E-03 0,0461 74170 2,57E-04 0,1139 76164 0,00E+00 0 77187 1,73E-03 0,0439 79183 2,68E-03 0,0352 74171 4,00E-04 0,0913 76165 0,00E+00 0 77188 1,22E-03 0,0522 79184 3,88E-03 0,0223 74172 5,53E-04 0,0776 76166 0,00E+00 0 77199 6,60E-04 0,071 79186 6,3E-03 0,0229 74174 7,47E-04 0,0668 76168 0,00E+00 0 77191 3,80E-04 0,0936 79187 7,32E-03 0,0213 74175 7,50E-04 0,0666 76169 6,67E-06 0,7071 77192 3,03E-04 0,1048 79188 7,86E-03 0,0205 74176 6,17E-04	74167	3,33E-06	1	75191	3,33E-06	1	77184	3,47E-03	0,0309		79180	3,30E-04	0,1005
74169 1,20E-04 0,1667 76163 3,33E-06 1 7/186 2,20E-03 0,0389 79182 1,57E-03 0,0461 74170 2,57E-04 0,1139 76164 0,00E+00 0 77187 1,73E-03 0,0439 79183 2,68E-03 0,0352 74171 4,00E-04 0,0913 76165 0,00E+00 0 77188 1,22E-03 0,0522 79184 3,88E-03 0,0293 74172 5,53E-04 0,0776 76166 0,00E+00 0 77189 9,43E-04 0,0594 79185 5,17E-03 0,0229 74174 7,47E-04 0,0668 76167 0,00E+00 0 77190 6,60E-04 0,071 79186 6,33E-03 0,0229 74174 7,47E-04 0,0666 76169 6,67E-06 0,771 77192 3,03E-04 0,1048 79188 7,86E-03 0,0205 74176 6,17E-04 0,0735 76170 6,67E-06 0,7071 77193 1,47E-04 0,1507 79189 7,79E-03 0,0206 74176 6,17E-04 <td>74168</td> <td>3,33E-05</td> <td>0,3162</td> <td>75192</td> <td>0,00E+00</td> <td>0</td> <td>//185</td> <td>2,91E-03</td> <td>0,0338</td> <td></td> <td>79181</td> <td>7,23E-04</td> <td>0,0679</td>	74168	3,33E-05	0,3162	75192	0,00E+00	0	//185	2,91E-03	0,0338		79181	7,23E-04	0,0679
74170 2,57E-04 0,1139 76164 0,00E+00 0 77187 1,75E-03 0,0439 79183 2,68E-03 0,0352 74171 4,00E-04 0,0913 76165 0,00E+00 0 77188 1,22E-03 0,0522 79184 3,88E-03 0,0293 74172 5,53E-04 0,0776 76166 0,00E+00 0 77189 9,43E-04 0,0594 79185 5,17E-03 0,0223 74174 7,47E-04 0,0668 76168 0,00E+00 0 77190 6,60E-04 0,071 79186 6,33E-03 0,0229 74175 7,50E-04 0,0666 76169 6,67E-06 0,7071 77192 3,03E-04 0,1048 79187 7,32E-03 0,0213 74176 6,17E-04 0,0735 76170 6,67E-06 0,7071 77193 1,47E-04 0,1507 79189 7,9E-03 0,0206 74176 6,17E-04 0,0733 76170 6,67E-06 0,7071 77193 1,47E-04 0,1507 79189 7,9E-03 0,0206 74177 4,80E-04	74169	1,20E-04	0,1667	76163	3,33E-06	1	//180	2,20E-03	0,0389		79182	1,5/E-03	0,0461
74171 4,00E-04 0,0913 76165 0,00E+00 0 77188 1,22E-03 0,0522 79184 3,88E-03 0,0293 74172 5,53E-04 0,0776 76166 0,00E+00 0 77189 9,43E-04 0,0594 79185 5,17E-03 0,0253 74173 6,57E-04 0,0712 76167 0,00E+00 0 77190 6,60E-04 0,071 79186 6,33E-03 0,0229 74174 7,47E-04 0,0668 76168 0,00E+00 0 77191 3,80E-04 0,0936 79187 7,32E-03 0,0213 74175 7,50E-04 0,0666 76169 6,67E-06 0,7071 77192 3,03E-04 0,1048 79188 7,86E-03 0,0205 74176 6,17E-04 0,0735 76170 6,67E-06 0,7071 77193 1,47E-04 0,1507 79189 7,79E-03 0,0206 74177 4,80E-04 0,0913 76172 2,33E-05 0,378 77194 9,33E-05 0,189 79190 7,23E-03 0,0226 74179 2,73E-04	74170	2,57E-04	0,1139	76164	0,00E+00	0	//18/	1,/3E-03	0,0439		79183	2,68E-03	0,0352
74172 5,33E-04 0,0776 76166 0,00E+00 0 77189 9,43E-04 0,0394 79185 5,17E-03 0,0253 74173 6,57E-04 0,0712 76167 0,00E+00 0 77190 6,60E-04 0,071 79186 6,33E-03 0,0229 74174 7,47E-04 0,0668 76168 0,00E+00 0 77191 3,80E-04 0,0936 79187 7,32E-03 0,0213 74175 7,50E-04 0,0666 76169 6,67E-06 0,7071 77192 3,03E-04 0,1048 79188 7,86E-03 0,0205 74176 6,17E-04 0,0735 76170 6,67E-06 0,7071 77193 1,47E-04 0,1507 79189 7,79E-03 0,0206 74177 4,80E-04 0,0833 76171 2,33E-05 0,378 77194 9,33E-05 0,189 79190 7,23E-03 0,0214 74178 4,00E-04 0,0913 76172 9,00E-05 0,1924 77195 9,00E-05 0,1924 79191 6,49E-03 0,0226 74179 2,7	74171	4,00E-04	0,0913	76165	0,00E+00	0	77188	1,22E-03	0,0522		79184	3,88E-03	0,0293
74173 6,57E-04 0,0712 76187 0,00E+00 0 77190 6,60E-04 0,071 79186 6,53E-03 0,0229 74174 7,47E-04 0,0668 76168 0,00E+00 0 77191 3,80E-04 0,0936 79187 7,32E-03 0,0213 74175 7,50E-04 0,0666 76169 6,67E-06 0,7071 77192 3,03E-04 0,1048 79188 7,86E-03 0,0205 74176 6,17E-04 0,0735 76170 6,67E-06 0,7071 77193 1,47E-04 0,1507 79189 7,79E-03 0,0206 74177 4,80E-04 0,0833 76171 2,33E-05 0,378 77194 9,33E-05 0,189 79190 7,23E-03 0,0214 74178 4,00E-04 0,0913 76172 9,00E-05 0,1924 77195 9,00E-05 0,1924 79190 7,23E-03 0,0226 74179 2,73E-04 0,1104 76173 2,53E-04 0,1147 77196 6,00E-05 0,2357 79192 5,68E-03 0,0259 74180 <t< td=""><td>74172</td><td>5,55E-04</td><td>0,0770</td><td>70100</td><td>0,00E+00</td><td>0</td><td>77100</td><td>9,43E-04</td><td>0,0594</td><td></td><td>79185</td><td>5,1/E-05</td><td>0,0255</td></t<>	74172	5,55E-04	0,0770	70100	0,00E+00	0	77100	9,43E-04	0,0594		79185	5,1/E-05	0,0255
74174 7,47E-04 0,0068 76188 0,00E+00 0 77191 5,80E-04 0,0936 79187 7,52E-03 0,0213 74175 7,50E-04 0,0666 76169 6,67E-06 0,7071 77192 3,03E-04 0,1048 79188 7,8E-03 0,0205 74176 6,17E-04 0,0735 76170 6,67E-06 0,7071 77193 1,47E-04 0,1507 79189 7,79E-03 0,0206 74177 4,80E-04 0,0833 76171 2,33E-05 0,378 77194 9,33E-05 0,189 79190 7,23E-03 0,0214 74178 4,00E-04 0,0913 76172 9,00E-05 0,1924 77195 9,00E-05 0,1924 79190 7,23E-03 0,0214 74179 2,73E-04 0,1104 76173 2,53E-04 0,1147 77196 6,00E-05 0,2357 79192 5,68E-03 0,02259 74180 1,83E-04 0,1348 76174 3,57E-04 0,0967 77197 3,33E-05 0,3162 79193 4,94E-03 0,0259 74180	74175	0,37E-04	0,0712	76169	0,00E+00	0	77101	0,00E-04	0,071		79180	0,55E-05	0,0229
74173 7,30E-04 0,0000 76189 6,07E-06 0,7071 77192 5,03E-04 0,1048 79188 7,86E-03 0,0205 74176 6,17E-04 0,0735 76170 6,67E-06 0,7071 77193 1,47E-04 0,1507 79189 7,79E-03 0,0206 74177 4,80E-04 0,0833 76171 2,33E-05 0,378 77194 9,33E-05 0,189 79190 7,23E-03 0,0214 74178 4,00E-04 0,0913 76172 9,00E-05 0,1924 77195 9,00E-05 0,1924 79191 6,49E-03 0,0226 74179 2,73E-04 0,1104 76173 2,53E-04 0,1147 77196 6,00E-05 0,2357 79192 5,68E-03 0,02242 74180 1,83E-04 0,1348 76174 3,57E-04 0,0967 77197 3,33E-05 0,3162 79193 4,94E-03 0,02259 74181 1,07E-04 0,1768 76175 7,93E-04 0,0648 77198 2,00E-05 0,4082 79194 4,04E-03 0,02287 74182	74174	7,47E-04	0,0008	76160	0,00E+00	0 7071	77102	3,00E-04	0,0950		70100	7,52E-05	0,0215
74170 0,0735 70170 0,0750 0,071 77195 1,47E-04 0,1307 79189 7,79E-03 0,0206 74177 4,80E-04 0,0833 76171 2,33E-05 0,378 77194 9,33E-05 0,189 79190 7,23E-03 0,0214 74178 4,00E-04 0,0913 76172 9,00E-05 0,1924 77195 9,00E-05 0,1924 79190 7,23E-03 0,0226 74179 2,73E-04 0,1104 76173 2,53E-04 0,1147 77196 6,00E-05 0,2357 79192 5,68E-03 0,0226 74180 1,83E-04 0,1348 76174 3,57E-04 0,0967 77197 3,33E-05 0,3162 79193 4,94E-03 0,0259 74181 1,07E-04 0,1768 76175 7,93E-04 0,0648 77198 2,00E-05 0,4082 79194 4,04E-03 0,0287 74182 7,00E-05 0,2182 76176 1,25E-03 0,0515 78168 1,67E-05 0,4472 79195 3,18E-03 0,0323 74183 3,00E-05	74175	6.17E.04	0,0000	76170	0,07E-00	0,7071	77102	3,03E-04	0,1048	1	70190	7,00E-03	0,0205
74177 4,00E-04 0,0333 76171 2,35E-03 0,1376 77194 9,35E-03 0,169 79190 7,25E-03 0,0214 74178 4,00E-04 0,0913 76172 9,00E-05 0,1924 77195 9,00E-05 0,1924 79191 6,49E-03 0,0226 74179 2,73E-04 0,1104 76173 2,53E-04 0,1147 77196 6,00E-05 0,2357 79192 5,68E-03 0,0226 74180 1,83E-04 0,1348 76174 3,57E-04 0,0967 77197 3,33E-05 0,3162 79193 4,94E-03 0,0259 74181 1,07E-04 0,1768 76175 7,93E-04 0,0648 77198 2,00E-05 0,4082 79194 4,04E-03 0,0259 74182 7,00E-05 0,2182 76176 1,25E-03 0,0515 78168 1,67E-05 0,4472 79195 3,18E-03 0,0323 74183 3,00E-05 0,3333 76177 1,79E-03 0,0432 78169 6,67E-06 0,7071 79196 2,65E-03 0,0354	74170	4 80F 04	0,0733	76171	2 33E 05	0.378	77104	0 33E 05	0,1507	1	70100	7 23E 02	0.0214
74170 7,002 04 0,013 70172 7,002 05 0,124 71193 9,002 05 0,124 79191 0,492 03 0,0220 74179 2,73E-04 0,1104 76173 2,53E-04 0,1147 77196 6,00E-05 0,2357 79192 5,68E-03 0,0242 74180 1,83E-04 0,1348 76174 3,57E-04 0,0967 77197 3,33E-05 0,3162 79193 4,94E-03 0,0259 74181 1,07E-04 0,1768 76175 7,93E-04 0,0648 77198 2,00E-05 0,4082 79194 4,04E-03 0,0287 74182 7,00E-05 0,2182 76176 1,25E-03 0,0515 78168 1,67E-05 0,4472 79195 3,18E-03 0,0323 74183 3,00E-05 0,3333 76177 1,79E-03 0,0432 78169 6,67E-06 0,7071 79196 2,65E-03 0,0354	74178	4.00E-04	0,0033	76172	2,35E-05	0.1024	77105	9.00F-05	0,109	1	70101	6.49E-03	0.0214
74180 1,83E-04 0,1348 76174 3,57E-04 0,0967 77197 3,33E-05 0,3162 79193 4,94E-03 0,0259 74180 1,07E-04 0,1768 76175 7,93E-04 0,0648 77197 3,33E-05 0,3162 79193 4,94E-03 0,0259 74181 1,07E-04 0,1768 76175 7,93E-04 0,0648 77198 2,00E-05 0,4082 79194 4,04E-03 0,0287 74182 7,00E-05 0,2182 76176 1,25E-03 0,0515 78168 1,67E-05 0,4472 79195 3,18E-03 0,0323 74183 3,00E-05 0,3333 76177 1,79E-03 0,0432 78169 6,67E-06 0,7071 79196 2,65E-03 0,0354	74179	2 73E-04	0 1104	76173	2 53E-04	0 1147	77196	6.00E-05	0.2357	1	79192	5.68E-03	0.0220
74181 1,07E-04 0,1768 76175 7,93E-04 0,0648 77198 2,00E-05 0,4082 79194 4,04E-03 0,0287 74182 7,00E-05 0,2182 76176 1,25E-03 0,0515 78168 1,67E-05 0,4472 79195 3,18E-03 0,0323 74183 3,00E-05 0,3333 76177 1,79E-03 0,0432 78169 6,67E-06 0,7071 79196 2,65E-03 0,0354	74180	1.83E-04	0.1348	76174	3.57E-04	0.0967	77197	3.33E-05	0.3162	1	79193	4.94E-03	0.0259
74182 7,00E-05 0,2182 76176 1,25E-03 0,0515 78168 1,67E-05 0,4472 79195 3,18E-03 0,0323 74183 3,00E-05 0,3333 76177 1,79E-03 0,0432 78169 6,67E-06 0,7071 79196 2,65E-03 0,0323	74181	1.07E-04	0.1768	76175	7.93E-04	0.0648	77198	2.00E-05	0.4082	1	79194	4.04E-03	0.0287
74183 3 00E-05 0 3333 76177 1 79E-03 0 0432 78169 6 67E-06 0 7071 79196 2 65E-03 0 0354	74182	7.00E-05	0.2182	76176	1.25E-03	0.0515	78168	1.67E-05	0.4472	1	79195	3.18E-03	0.0323
	74183	3.00E-05	0.3333	76177	1.79E-03	0.0432	78169	6.67E-06	0.7071		79196	2.65E-03	0.0354

Z/A	Yields	Error	Z/A	Yields	Error	Z/A	Yields	Error
79197	1,90E-03	0,0418	81200	1,07E-02	0,0175	83199	2,21E-03	0,0388
79198	1,60E-03	0,0457	81201	1,06E-02	0,0176	83200	2,23E-03	0,0386
79199	1,25E-03	0,0517	81202	1,01E-02	0,0181	83201	2,63E-03	0,0355
79200	9,50E-04	0,0592	81203	9,84E-03	0,0183	83202	2,55E-03	0,0361
79201	7,70E-04	0,0658	81204	9,91E-03	0,0183	83203	2,74E-03	0,0348
79202	5,17E-04	0,0803	81205	1,04E-02	0,0178	83204	2,97E-03	0,0334
79203	3,63E-04	0,0958	81206	1,11E-02	0,0173	83205	2,91E-03	0,0338
79204	2,03E-04	0,128	81207	2,05E-02	0,0126	83206	3,01E-03	0,0332
80177	9,33E-05	0,189	81208	1,93E-04	0,1313	83207	2,29E-03	0,0381
80178	1,33E-05	0,5	81209	0,00E+00	0	83208	1,49E-03	0,0472
80179	0,00E+00	0	81210	0,00E+00	0	83209	0,00E+00	0
80180	1,00E-05	0,5773	82183	0,00E+00	0	83210	0,00E+00	0
80181	7,00E-05	0,2182	82184	0,00E+00	0	83211	0,00E+00	0
80182	2,20E-04	0,1231	82185	0,00E+00	0	83212	0,00E+00	0
80183	4,60E-04	0,0851	82186	3,33E-06	1	83213	0,00E+00	0
80184	1,00E-03	0,0577	82187	4,33E-05	0,2773	83214	0,00E+00	0
80185	2,08E-03	0,04	82188	1,57E-04	0,1459	83215	0,00E+00	0
80186	3,36E-03	0,0315	82189	3,13E-04	0,1031	84192	0,00E+00	0
80187	5,02E-03	0,0257	82190	8,40E-04	0,063	84193	0,00E+00	0
80188	6,56E-03	0,0225	82191	1,43E-03	0,0482	84194	6,67E-06	0,7071
80189	7,47E-03	0,021	82192	2,56E-03	0,036	84195	1,67E-05	0,4472
80190	8,89E-03	0,0193	82193	3,60E-03	0,0304	84196	2,00E-05	0,4082
80191	9,47E-03	0,0187	82194	4,85E-03	0,0262	84197	1,67E-05	0,4472
80192	9,77E-03	0,0184	82195	5,85E-03	0,0238	84198	7,00E-05	0,2182
80193	9,43E-03	0,0187	82196	7,20E-03	0,0214	84199	3,67E-05	0,3015
80194	9,48E-03	0,0187	82197	8,11E-03	0,0202	84200	8,67E-05	0,1961
80195	8,38E-03	0,0199	82198	8,68E-03	0,0195	84201	1,07E-04	0,1768
80196	7,88E-03	0,0205	82199	9,42E-03	0,0187	84202	1,53E-04	0,1474
80197	7,11E-03	0,0216	82200	1,00E-02	0,0182	84203	9,00E-05	0,1924
80198	5,90E-03	0,0237	82201	1,07E-02	0,0176	84204	9,00E-05	0,1924
80199	5,26E-03	0,0251	82202	1,10E-02	0,0173	84205	7,00E-05	0,2182
80200	4,64E-03	0,0267	82203	1,22E-02	0,0164	84206	6,00E-05	0,2357
80201	3,95E-03	0,029	82204	1,29E-02	0,016	84207	3,00E-05	0,3333
80202	3,17E-03	0,0324	82205	1,55E-02	0,0146	84208	3,33E-06	1
80203	2,90E-03	0,0338	82206	2,03E-02	0,0127	84209	0,00E+00	0
80204	2,26E-03	0,0384	82207	3,72E-02	0,0093	84210	0,00E+00	0
80205	1,81E-03	0,0429	82208	4,75E-03	0,0264	84211	0,00E+00	0
80206	9,50E-04	0,0592	82209	0,00E+00	0	84212	0,00E+00	0
81184	1,47E-04	0,1507	82210	0,00E+00	0	84213	0,00E+00	0
81185	1,63E-04	0,1428	82211	0,00E+00	0	84214	0,00E+00	0
81186	5,33E-04	0,079	82212	0,00E+00	0	84215	0,00E+00	0
81187	1,28E-03	0,051	82213	0,00E+00	0	84216	0,00E+00	0
81188	2,21E-03	0,0388	82214	0,00E+00	0	84217	0,00E+00	0
81189	3,24E-03	0,032	83188	0,00E+00	0	84218	0,00E+00	0
81190	4,94E-03	0,0259	83189	0,00E+00	0	85196	0,00E+00	0
81191	6,63E-03	0,0224	83190	3,33E-06	1	85197	0,00E+00	0
81192	7,85E-03	0,0205	83191	5,00E-05	0,2582	85198	0,00E+00	0
81193	9,43E-03	0,0187	83192	1,17E-04	0,169	85199	0,00E+00	0
81194	9,92E-03	0,0182	83193	3,17E-04	0,1026	85200	0,00E+00	0
81195	1,12E-02	0,0172	83194	6,03E-04	0,0743	85201	0,00E+00	0
81196	1,14E-02	0,017	83195	8,00E-04	0,0645	85202	0,00E+00	0
81197	1,13E-02	0,0171	83196	1,23E-03	0,0521	85203	0,00E+00	0
81198	1,14E-02	0,017	83197	1,53E-03	0,0466	85204	0,00E+00	0
81199	1,13E-02	0,0171	83198	1,82E-03	0,0427	85205	3,33E-06	1

Annex B Experimental data at 600 MeV for ²⁰⁸Pb

These experimental data are preliminary data from ISTC#2002 [49].

Z	Nucl.	А	T ^{1/2}	Yields typ	Yields	Error	Ζ	Nucl.	А	T ^{1/2}	Yields typ	Yields	Er
3	Bi	206	6.243D	i	5,393	0,362	75	Re	182m	12.7H	с	37,451	2,9
3	Bi	205	15.31D	i	8,001	0,533	75	Re	181	19.9H	с	27,071	3,
33	Bi	204	11.22H	i	6,974	0,465	75	Re	179	19.5M	c*	29,111	2,
33	Bi	203	11.76H	i(m+g)	6,895	0.703	75	Re	178	13.2M	c*	27 447	3
22	Di Di	203	1 721	i(iii+g)	6.084	0,705	74	w	170	21.6D	0	19 712	2
	DI	202	1./2 Π	1	0,084	0,710	74	vv	178	21.0D	c	16,/12	5
32	Pb	204m	67.2M	i(m)	14,398	0,972	74	W	177	135M	с*	15,474	1
32	Pb	204m	67.2M	с	15,437	1,036	74	W	176	2.5H	с	8,799	2
32	Pb	203	51.873H	с	40,834	2,913	73	Та	177	56.56H	с	18,047	4
32	Pb	202m	3.53H	i(m)	14,104	1,209	73	Та	176	8.09H	i	7,165	2
32	Pb	201	9.33H	c*	35,243	3,233	73	Та	176	8.09H	с	15,964	1
32	Pb	200	21.5H	с	27,642	1,873	73	Та	175	10.5H	c*	13,301	1
32	Pb	199	90M	c*	54,758	9.722	73	Та	173	3.14H	с	11.086	1
2	Dh	107m	/3M	c*	26.648	4 506	72	Цf	175	70D	0	12 738	0
2	FU DI	19/11	45111	с. *	20,048	4,500	72	п	175	70D	C	12,756	0
52	Pb	196	3/M	C*	25,520	3,488	12	HI	1/3	23.6H	с	8,063	0
32	Pb	195m	15.0M	i(m)	14,656	2,974	72	Hf	172	1.87Y	с	6,430	0
81	Tl	202	12.23D	с	21,681	1,480	72	Hf	170	16.01H	с	5,189	1
1	Tl	201	72.912H	с	61,035	4,519	71	Lu	173	1.37Y	с	8,681	0
1	Tl	200	26.1H	i	29,103	2,172	71	Lu	172	6.70D	с	6,665	0
1	Tl	200	26.1H	с	56,684	3,780	71	Lu	171	8.24D	c*	6,340	0
1	TI	199	7.42H	с	56 146	5,961	71	Lu	170	2.012D	с	3,485	0
21	TI	108m	1 874	i(m)	25 260	3 1/0	71	In	160	34 064	c c	3 7/12	
1	- 11	12011	1.0/П	i(iii)	49,000	3,449	71		109	22.02CD	C	3,742	
1		196m	1.41H	1(m)	48,822	8,969	70	Yb	169	32.026D	с	5,728	
0	Hg	203	46.612D	с	4,141	0,284	70	Yb	166	56.7H	с	1,765	0
0	Hg	197m	23.8H	i(m)	13,090	0,953	69	Tm	167	9.25D	с	2,554	0
0	Hg	195	9.9H	с	56,448	6,959	69	Tm	165	30.06H	с	1,152	0
0	Hg	195m	41.6H	i(m)	17,175	1,681	64	Gd	149	9.28D	с	0,141	0
0	Hg	193m	11.8H	i(m)	22,237	3,559	58	Ce	139	137.640D	с	0,254	0
0	Но	192	4 85H	C C	51 073	5 643	54	Xe	127	36.4D	C	0.626	0
20	115	100	20.0M	2*	20 702	6 2 4 2	52	То	127 122m	110 7D	i(m)	0,020	0
50 70	ng	190	20.010		36,765	0,342	52	т	12311	119.70	I(III)	0,429	
9	Au	198m	2.27D	1(m)	0,769	0,058	52	Te	121m	154D	1(m)	0,465	0
9	Au	198	2.69517D	i	1,623	0,121	52	Te	121	19.16D	с	0,820	0
9	Au	198	2.69517D	i(m+g)	2,399	0,162	52	Te	119m	4.70D	i(m)	0,260	0
9	Au	196	6.183D	i(m1+m2+g)	4,372	0,319	51	Sb	120m	5.76D	i(m)	0,471	0
9	Au	195	186.098D	с	68,858	7,804	50	Sn	113	115.09D	с	0,377	0
9	Au	194	38.02H	i(m1+m2+g)	7,770	0,676	49	In	114m	49.51D	i(m)	1,522	0
9	Au	192	4.94H	i(m+g)	10.520	1,533	47	Aσ	110m	249.76D	i(m)	1.443	0
9	A11	192	4 94H	c C	74 571	10 293	47	Δσ	106m	8 28D	i(m)	0.507	0
0	A 11	101	2 1011	*	69 521	5 060	45	Dh	105	25 2611	1(11)	5,220	0
9	Au	191	3.16П	C	08,331 52.101	5,000	43	KI	105	<u>ээ.зоп</u>	с	5,529	0
9	Au	190	42.8M	с	53,194	5,081	45	Rh	102	207D	1	0,682	0
8	Pt	191	2.802D	с	54,852	4,582	45	Rh	101m	4.34D	с	0,801	0
8	Pt	189	10.87H	c*	57,905	4,004	44	Ru	103	39.26D	с	4,925	0
8	Pt	188	10.2D	с	51,755	3,595	43	Тс	96	4.28D	i(m+g)	0,760	0
8	Pt	187	2.35H	с	40,255	8,907	43	Тс	95	20.0H	c*	0,337	0
8	Pt	186	2.08H	с	39,237	8,819	41	Nb	96	23.35H	i	3,079	0
8	Pt	184	17.3M	с	30.645	5.882	41	Nb	95	34.975D	i(m+g)	3.422	0
7	Ir	102	73 8270	$i(m1+\alpha)$	0.163	0.017	41	Nb	95	34 9750	C	6 378	0
' ''	T.	100	11 700	$i(m1+\alpha)$	0.474	0.072	/1	NL	02-	10.150	i(m)	0.225	
1	II'	190	11./ðD	1(m1+g)	0,476	0,072	41		92m	10.15D	1(m)	0,335	
7	lr	189	13.2D	с	52,590	5,498	40	Zr	97	16.744H	с	0,880	0
7	Ir	188	41.5H	i	2,947	0,295	40	Zr	95	64.02D	с	2,945	0
7	Ir	188	41.5H	с	54,672	4,076	40	Zr	89	78.41H	с	1,180	0
7	Ir	187	10.5H	c*	49,886	4,015	40	Zr	88	83.4D	с	0,478	0
7	Ir	186	16.64H	i	22,274	1,610	39	Y	90m	3.19H	i(m)	3,362	0
7	Ir	185	14.4H	c*	32.130	4.282	39	Y	88	106.65D	i	2.531	0
7	Ir	184	3 00H	C	34 892	3 026	30	v	88	106 65D	c	2 946	0
' 7	Ir.	192	57M		33 772	8 171	20	v	87	70.81		1 860	
	П	103	57M	C	33,213	0,1/1	39		0/	/9.0H	C	1,009	
6	Os	185	93.6D	с	44,654	3,097	38	Sr	85	64.84D	с	1,857	0
6	Os	183m	9.9H	с	20,252	2,008	37	Rb	86	18.631D	i(m+g)	4,196	0
6	Os	182	22.10H	с	38,665	2,944	37	Rb	83	86.2D	с	2,173	0
6	Os	181	105M	с	11,187	1,525	35	Br	82	35.30H	i(m+g)	2,304	0
6	Os	180	21.5M	c*	24,495	1,934	34	Se	75	119.779D	с	0,610	0
	1		70.00		20 222	2845	33	As	74	17 77D	i	1 1 4 7	

Ζ	Nucl.	А	T ^{1/2}	Yields typ	Yields	Error
31	Ga	72	14.10H	i	1,097	0,209
31	Ga	72	14.10H	с	1,475	0,201
30	Zn	72	46.5H	с	0,378	0,045
26	Fe	59	44.472D	с	0,528	0,045
21	Sc	46	83.79D	i(m+g)	0,112	0,016
4	Be	7	53.29D	i	1,141	0,214

Annex C Calculations of volumes of the LiSoR test tube cells

The geometry is presented on figure C-1 and the parameters are recapitulated in table C-1.

Figure C-1: Geometrical representation of the LiSoR test tube to volume calculation.

The principal difficulty lies in the calculation of the cell 5 volume. First, the following formula allows calculating the angle a:

$$b = 2R\cos\left(\frac{a}{2}\right) \tag{C.1}$$

where *b* is the distance between the surfaces 15 and 16 defined in the MCNPX input file shown table 4-1, *R* is the radius of the circle and *a* is the angle $A\hat{O}B$ is defined in figure C-1.

Then, we obtain the formula to calculate the area of the cell 5:

$$A = R^2 (p - a + \sin(a)) \tag{C.2}$$

L [cm]	40,00
b [cm]	1,20
R [cm]	1,30

Table C-1: Summary of the main geometrical value of the LiSoR test tube.

This allows calculating the volumes of the cell 5. The other areas are only rectangles and circles and they represent no difficulties. The results are summarized in table C-2:

cells	1	2	3	4	5
volume [cm3]	infinity	112977,12	8	79,42	32,80

Table C-2: Cells volume of the LiSoR test tube geometry.

Annex D Concentrations and alpha-activities of Polonium isotopes after 34 hours continuous irradiation in the real geometry target

	L	AHET-1 month	F	LUKA-1 month	MCNPX (Real geometry)-1 month			
Nuclides	α-Activity [Becq]	Production rate [gr.atoms/liter eutectic]	α-Activity [Becq]	Production rate [gr.atoms/liter eutectic]	α-Activity [Becq]	Production rate [gr.atoms/liter eutectic]	error	
Po-203	8,586E+07	1,562E-11	8,113E+07	1,476E-11	1,376E+08	2,502E-11	37,6%	
Po-204	4,389E+09	8,100E-10	3,970E+09	7,326E-10	4,963E+09	9,159E-10	11,6%	
Po-205	3,260E+08	5,061E-10	4,350E+08	6,753E-10	3,772E+08	5,856E-10	13,6%	
Po-206	2,840E+10	3,797E-08	4,169E+10	5,573E-08	4,419E+10	5,908E-08	35,7%	
Po-207	9,768E+07	9,407E-11	1,342E+08	1,292E-10	1,958E+08	1,886E-10	50,1%	
Po-208	8,537E+09	7,476E-08	1,443E+10	1,263E-07	1,591E+10	1,393E-07	46,3%	
Po-209	4,779E+07	1,480E-08	8,262E+07	2,559E-08	4,203E+07	1,302E-08	13,7%	

	L	AHET-3 months	FI	LUKA-3 months	MCNPX (Real geometry)-3 months			
Nuclides	α-Activity Production rate [Becq] [gr.atoms/liter eutectic]		α-Activity [Becq]	Production rate [gr.atoms/liter eutectic]	α-Activity [Becq]	Production rate [gr.atoms/liter eutectic]	error	
Po-203	8,586E+07	1,562E-11	8,113E+07	1,476E-11	1,376E+08	2,502E-11	37,6%	
Po-204	4,389E+09	8,100E-10	3,970E+09	7,326E-10	4,963E+09	9,159E-10	11,6%	
Po-205	3,260E+08	5,061E-10	4,350E+08	6,753E-10	3,772E+08	5,856E-10	13,6%	
Po-206	3,121E+10	4,172E-08	4,580E+10	6,123E-08	4,855E+10	6,490E-08	35,7%	
Po-207	9,768E+07	9,407E-11	1,342E+08	1,292E-10	1,958E+08	1,886E-10	50,1%	
Po-208	2,511E+10	2,199E-07	4,243E+10	3,716E-07	4,679E+10	4,098E-07	46,3%	
Po-209	1.433E+08	4.439E-08	2.477E+08	7.673E-08	1.260E+08	3.904E-08	13.7%	

	L	AHET-6 months	FI	LUKA-6 months	MCNPX (Real geometry)-6 months			
Nuclides	α-ActivityProduction rate[Becq][gr.atoms/liter eutectic]		α-Activity [Becq]	Production rate [gr.atoms/liter eutectic]	α-Activity [Becq]	Production rate [gr.atoms/liter eutectic]	error	
Po-203	8,586E+07	1,562E-11	8,113E+07	1,476E-11	1,376E+08	2,502E-11	37,6%	
Po-204	4,389E+09	8,100E-10	3,970E+09	7,326E-10	4,963E+09	9,159E-10	11,6%	
Po-205	3,260E+08	5,061E-10	4,350E+08	6,753E-10	3,772E+08	5,856E-10	13,6%	
Po-206	3,123E+10	4,175E-08	4,583E+10	6,127E-08	4,859E+10	6,495E-08	35,7%	
Po-207	9,768E+07	9,407E-11	1,342E+08	1,292E-10	1,958E+08	1,886E-10	50,1%	
Po-208	4,875E+10	4,270E-07	8,238E+10	7,215E-07	9,086E+10	7,957E-07	46,3%	
Po-209	2,863E+08	8,870E-08	4,950E+08	1,533E-07	2,518E+08	7,800E-08	13,7%	

Bibliography

- [1] The European Technical Working Group on ADS, A European Roadmap for Developing Accelerator Driven Systems (ADS) for Nuclear Waste Incineration, April 2001.
- [2] C. Rubbia et al., Conceptual design of a fast neutron operated high power energy amplifier, CERN/AT/95-44 (ET), 1995.
- [3] http://aaa.lanl.gov/
- [4] http://www.pnl.gov/atw/
- [5] http://www.europhysicsnews.com/full/06/article8/article8.html
- [6] J. Cugnon et al., Nucl. Phys. A, 620, 475 (1997).
- [7] K. H. Schmidt et al., Nucl. Phys. A, 665, 221 (2000).
- [8] J.-J. Gaimard, K.-H.Schmidt; Nucl. Physics A, 531, 709 (1991).
- [9] T. Auger, Y. Bortoli, A. Cadiou, T. Kirchner, J.S. Stutzman (Subatech), Y. Dai, S. Dementjev, K. Geismann, F. Gröschel, F. Heinrich, K. Kohlik, G. von Holzen, Ch. Perret, D. Viol (PSI), H. Glasbrenner (FZK), *Design Report for the LiSoR project*, 2001.
- [10] http://inrwww.fzk.de/~inr487/public_html/megapie.pdf
- [11] C.H.M. Broeders, PhD thesis, Entwicklungsarbeiten für die neutronenphysikalische Auslegung von Fortschrittlichen Druckwasserreaktoren (FDWR) mit kompakten Dreiecksgittern in hexagonalen Brennelementen, Forschungszentrum Karlsruhe, 1992.
- [12] E. Stein, E. Wiegner, C. Broeders, *Kurzbeschreibung des KAPROS-Moduls BURNUP*, interne KAPROS-Notiz, 1982.
- [13] F. Atchinson, H. Schaal, ORIHET3, Version1.12, A guide for users, May 2002.
- [14] W. M. Brobeck, E. O. Lawrence et al., Phys. Rev., 71 (number 7), 449 (1947).
- [15] J. Taieb, PhD thesis, Etude de la production de noyaux résiduels d'évaporation issus de la réaction de spallation de l'uranium-238 par des protons á 1 GeV, Université de Paris Sud, INP-CNRS Orsay, October 2000.
- [16] http://www.cea.fr/fr/Publications/Clefs46/clefs46fr/clefs46_35.html

- [17] A. Boudard, J. Cugnon, S. Leray, C. Volant, *Intranuclear Cascade for a comprehensive description of spallation reaction data*, December 3, 2001.
- [18] R. Serber, Phys. Rev., 72, 1114 (1947).
- [19] http://lpsc.in2p3.fr/reacteurs-hybrides/atelier_gedeon/Cugnon/Cugnon02.html
- [20] H.W. Bertini, Phys. Rev., 88, 1711 (1969).
- [21] H.W. Bertini, *Phys.Rev.*, **31**,1801 (1963).
- [22] V. S. Barashenkov et al., Sov. Phys., Usp 16, 31 (1973).
- [23] V. Baylac-Domengetroy, Diplomarbeit, Investigations Related to the Generation of Reaction Products in the Target of Accelerator Driven Systems for Nuclear Waste Incineration, Forschungszentrum Karlsruhe, FZKA 6908, 2003.
- [24] A. Boudard et al., Phys. Rev. C, 66, 044615 (2002).
- [25] I. Broeders, Private communication.
- [26] C. Villagrasa-Cantón, PhD thesis, Etude de la production de noyaux résiduels dans la réaction de spallation Fe+p à 5 énergies (300-1500 MeV/A) et applications au calcul de dommages sur une fenêtre de système hybride, Université Paris XI Orsay, December 2003.
- [27] B. Fernandez-Dominguez, PhD thesis, *Etude de la production des fragments de fission de la réaction*²⁰⁸*Pb+p à 500 AMeV*, Université de Caen, March 2003.
- [28] V. F. Weisskopf, *Phys. Rev.*, **52**, 295 (1937).
- [29] V.F. Weisskopf, D. H. Ewing, *Phys. Rev.*, 57, 472 (1939).
- [30] A. R. Junghans et al., Nucl. Phys. A, 629, 635 (1998).
- [31] E. Vogt, Single neutrons halos in the valley of stability, Vancouver, May 2002.
- [32] A. Boudard, Private communication.
- [33] L. S. Waters, MCNPX user's manual, Version 2.4.0, September 2002.
- [34] R. E. Prael, H. Lichtenstein, *User Guide to LCS: The LAHET Code System*, LANL, September 1989.
- [35] J. S. Hendricks, G. W. McKinney, L. S. Waters *et al.*, *MCNPX extensions, Version* 2.5.0, February 2004.
- [36] J. S. Hendricks, G. W. McKinney, L. S. Waters *et al.*, *MCNPX extensions*, *Version 2.5.d*, August 2003.
- [37] E-mail exchange with the SPhN (Service de Physique Nucléaire) at the CEA of Saclay.
- [38] http://dpnc.unige.ch/atlas/xin/noyaux/pdf/chapitre-2.pdf
- [39] http://www.carleton.ca/~dwiles/CRNL/section_one.htm

- [40] H. A. Bethe, *Phys. Rev.*, **54**, 436 (1938).
- [41] W. H. Barkas, Phys. Rev., 55, 961 (1939).
- [42] L. Sihver et al., Phys. Rev. C, 47, 1225 (1993).
- [43] S. Kox et al. Phys. Rev. C, 35, 1678 (1987).
- [44] Shen et al. Nucl. Phys. A, 491, 130 (1989).
- [45] R. K. Tripathi et al., NASA Technical Paper, 3621 (1997).
- [46] Y. E. Titarenko, *Experimental and theorical study of the yields od residual product nuclei produced in thin targets irradiated by 100-2600 MeV protons*, ISTC, February 2001.
- [47] http://www-wnt.gsi.de/kschmidt
- [48] T. Enqvist et al., Nucl. Phys. A, 686, 481 (2001).
- [49] Y. E. Titarenko, private communication.
- [50] L. Audouin, PhD thesis, *Dépendence en énergie des spectres isotopiques de résidus de spallation*, Université de Paris 6, September 2003.
- [51] http://www.ganil.fr/eurisol/TOWN_MEETING_ABANO/ThomasKirchener.pdf
- [52] H. Glasbrenner et al., First irradiation experiment at the LiSoR loop, PSI.
- [53] Y. Foucher (Subatech), M. Pepin (PSI), M. Embib (Ciemat), *Nuclear Assessment of the LiSoR project*, 2000.
- [54] M. Pepin, Production of α-Radioactivity by 72 MeV protons on lead-bismuth eutectic and subsequent radiotoxic risk by evaporation of Pb-Po from open liquid surfaces, PSI.
- [55] P. Trabuc, the problem of polonium contamination in the MEGAPIE spallation target, CEA, 2001.
- [56] http://atom.kaeri.re.kr/ton/
- [57] H. Glasbrenner, J. Eikenberg, F. Gröschel, L. Zanini, Irradiated Pb-55.5 Bi, PSI, 2003.
- [58] http://asq.web.psi.ch/ASQ/facilities/SINQSYSTEMS.html
- [59] http://sinq.web.psi.ch/
- [60] U. Fischer, H. W. Wiese, Verbesserte konsistente Berechnung des nuklearen Inventars abgebrannter DWR-Brennstoffe auf der Basis von Zell-Abbrabd-Verfahren mit KORIGEN, KfK 3014 (1983).
- [61] M. J. Bell, ORIGEN- The ORNL Isotope Generation and Depletion Code, ORNL-4628 UC-32 (1973).

Validation of Calculation Tools for the Estimation of Reaction Products in the Target of Accelerator Driven Systems

Summary

The spallation reactions have recently gained considerable interest due to their importance in technical applications. The spallation reactions generate a lot of neutrons and they can, for example, be used as spallation neutron sources. This property can be utilized in an Accelerator Driven System (ADS) which is composed of a neutron source, a spallation target and a sub-critical reactor. Thanks to the external neutron source, this application will allow to produce energy with higher safety and to incinerate nuclear waste. Actually several experimental research programs are running in order to realized the final construction of a hybrid system prototype: MUSE, TRADE, MYRRHA, MEGAPIE.

A working tool to simulate the spallation reaction is provided to us. The MCNPX code (Monte Carlo with N Particles eXtended), is developed at the LANL and it is used actually at the IRS within the framework of the beta-testing. First we analyzed the new models INCL4 and ABLA recently integrated in the new version 2.5e of MCNPX in comparison with the original codes of J. Cugnon and K. H. Schmidt. It allows us to recommend the input parameters defining the pysical models and the corresponding normalizations. Moreover the influences of different input parameters on the spallation cross sections are quantified. We investigated the agreement of this code options with the experimental data from the GSI and ISTC groups at 1 GeV, with new data from the ISTC group at 600 MeV and with recently available data at 500 MeV from the GSI group. Further we studied the decay of isotopes in a LiSoR target experiment (Liquid metal Solid metal Reaction) in order to estimate the activity of residual spallation products which are radiotoxic as the Polonium 209. The last part of this work is devoted to the study of two codes which calculate the decay of isotopes: The modul BURNOD of the KAPROS system and the ORIHET3 code. The physical principles and theire use are discussed.

Validierung von Rechen-Programmen zur Abschätzung von Reaktionsprodukten im Target von Beschleuniger-Getriebenen Systemen

Zusammenfassung

Vor kurzem haben Spallations-Reaktionen beträchtliches Interesse wegen ihrer Bedeutung für technische Anwendungen gewonnen. Die Spallations-Reaktionen erzeugen viele Neutronen und sie können zum Beispiel als Spallations-Neutronenquellen verwendet werden. Diese Eigenschaft kann in einem Beschleuniger-gesteuerten unterkritischen System (ADS) benutzt werden, welches aus einer Neutronenquelle, einem Spallations-Target und einem unterkritischen Reaktor besteht. Diese Anwendung ermöglicht, wegen der externen Neutronenquelle, Energie mit höherer Sicherheit zu produzieren und nukleare Abfälle zu verbrennen. Zur Zeit laufen mehrere experimentelle Forschungs Programme, um zum Aufbau eines Prototyps für ein hybrides Systems zu führen: MUSE, TRADE, MYRRHA, MEGAPIE.

Ein Arbeitswerkzeug steht uns zur Verfügung, um die Spallation Reaktion zu simulieren. Dieser Code, genannt MCNPX (Monte-Carlo mit N Partikeln eXtended), wird am LANL entwickelt und er wird am IRS im Rahmen des Beta-Tests verwendet. Zuerst haben wir die neuen Modelle INCL4 und ABLA, die vor kurzem in der neuen Version 2.5e von MCNPX integriert wurden, im Vergleich mit den Ursprungscodes von J. Cugnon and K. H. Schmidt analysiert. Das hat uns ermöglicht, die geeigneten Eingabe Parameter und Normalisierungen zu bestimmen. Außerdem sind die Einflüsse der unterschiedlichen Eingangs-Parameter auf die Spallations Querschnitte quantitativ bestimmt. Weiter haben wir die Übereinstimmung der Ergebnisse dieser Codes mit den experimentellen Daten von den gruppen GSI und ISTC bei 1 GeV, mit die neuen Daten von der Gruppe ISTC bei 600 MeV und mit ganz neu verfügbaren Daten von GSI bei 500 MeV untersucht. Dann haben wir den Zerfall der Isotope im Rahmen des LiSoR Projekts (Liquid metal Solid metal Reaction) studiert um die Aktivitäten der Spallationprodukte abzuschätzen, die wie zum Beispiel Polonium 209 radiotoxisch sein können. Der letzte Teil dieser Arbeit befasst sich mit zwei Codes, die den Zerfall von Isotopen berechnen. Der Modul BURN0D aus dem KAPROS System und der ORIHET3 Code. Die physikalische Grundlagen und die Benutzung dieser Programme sind dort erläutert.

Validation des Outils de Calcul pour l'Estimation des Produits de Réaction dans la Cible d'un Système Sous-Critique Piloté par Accélérateur

Résumé

Les réactions de spallation ont récemment connu un regain d'intérêt considérable grâce à leur importance dans les applications techniques. Les réactions de spallation sont en effet très neutrogènes et elles peuvent, par exemple, être employées en tant que sources de neutrons de spallation. Cette propriété peut être utilisée dans un système sous-critique piloté par accélérateur (Accelerator Driven System, ADS) qui est composé d'une source de neutron, d'une cible de spallation et d'un réacteur sous-critique. Grâce à cette source extérieure de neutrons, cette application permet de produire de l'énergie avec une augmentation de la sûreté et d'incinérer des déchets nucléaires. Actuellement plusieurs programmes expérimentaux de recherche sont en cours afin d'arriver à la construction finale d'un démonstrateur de système hybride : MUSE, TRADE, MYRRHA, MEGAPIE.

Nous avons à notre disposition un outil de travail pour simuler la réaction de spallation. Ce code, appelé MCNPX (Monte Carlo avec N Particules eXtended), est développé au LANL et il est employé actuellement à l'IRS dans le cadre du beta-testing. D'abord nous avons analysé les nouveaux modèles INCL4 et ABLA récemment intégrés dans la nouvelle version 2.5e de MCNPX en comparaison avec les codes d'origine de J. Cugnon et K. H. Schmidt. Cela nous a permis de comprendre et déterminer les paramètres d'entrée définissant les modèles physiques ainsi que les normalisations correspondantes. De plus, l'influence de certains paramètres d'entrée sur les distributions de spallation a été évaluée. Ensuite nous avons étudié la concordance de ces codes avec les données expérimentales des groupes GSI et ISTC à 1 GeV tout d'abord, puis avec les nouvelles du groupe ISTC à 600 MeV et enfin avec des données du groupe GSI à 500 MeV obtenues très récemment. Ensuite nous avons étudié la décomposition des isotopes dans une cible définit par le projet LiSoR (Liquid metal Solid metal Reaction) afin d'estimer l'activité des produits résiduels de spallation qui peuvent être radiotoxiques comme le Polonium 209, par exemple. La dernière partie de ce travail est dédiée à l'étude de deux codes calculant la décomposition des isotopes : Le module BURN0D du système KAPROS et le code ORIHET3. Les principes physiques de leur fonctionnement ainsi que leur utilisation y sont développés.